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Abstract 

Background  While unstructured data, such as free text, constitutes a large amount of publicly available biomedical 
data, it is underutilized in automated analyses due to the difficulty of extracting meaning from it. Normalizing free-
text data, i.e., removing inessential variance, enables the use of structured vocabularies like ontologies to represent 
the data and allow for harmonized queries over it. This paper presents an adaptable tool for free-text normalization 
and an evaluation of the application of this tool to two different fields curated from the literature in the Immune 
Epitope Database (IEDB): “age” and “data-location” (the part of a paper in which data was found).

Results  Free text entries for the database fields for subject age (4095 distinct values) and publication data-location 
(251,810 distinct values) in the IEDB were analyzed. Normalization was performed in three steps, namely character 
normalization, word normalization, and phrase normalization, using generalizable rules developed and applied 
with the tool presented in this manuscript. For the age dataset, in the character stage, the application of 21 rules 
resulted in 99.97% output validity; in the word stage, the application of 94 rules resulted in 98.06% output validity; 
and in the phrase stage, the application of 16 rules resulted in 83.81% output validity. For the data-location dataset, 
in the character stage, the application of 39 rules resulted in 99.99% output validity; in the word stage, the application 
of 187 rules resulted in 98.46% output validity; and in the phrase stage, the application of 12 rules resulted in 97.95% 
output validity.

Conclusions  We developed a generalizable approach for normalization of free text as found in database fields 
with content on a specific topic. Creating and testing the rules took a one-time effort for a given field that can now 
be applied to data as it is being curated. The standardization achieved in two datasets tested produces significantly 
reduced variance in the content which enhances the findability and usability of that data, chiefly by improving search 
functionality and enabling linkages with formal ontologies.
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Background
A lot of data within and outside the biomedical field is 
unstructured, a category that includes data in the form of 
text, images, audio, and video, with estimates ranging as 
high as 95% [1]. Unstructured data is commonly under-
utilized due to the difficulty of automatically extract-
ing meaningful information from these forms of data. 
We work on the Immune Epitope Database (IEDB) [2], 
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a publicly available database of immune epitopes that 
prominently features epitopes recognized in the context 
of infectious and immune-mediated diseases. The IEDB 
links its data to ontology terms so its data is interoperable 
with other ontologized databases and connected to the 
large network of ontology metadata [3]. In our work on 
the IEDB, we have found that unstructured data also lags 
behind structured data in adherence to FAIR data stand-
ards, and we identified data from certain free-text fields 
as a target for improvement [3]. Creating more linkages 
between free-text data in the IEDB and structured vocab-
ularies like ontologies is one way to improve the FAIRness 
of that data [3]. Normalizing free-text data, i.e., removing 
variance that does not affect meaning from text, can be 
used to align data to structured vocabularies. The IEDB 
therefore aims to use text normalization to enable link-
ages between that data and ontology terms. This paper 
presents a novel repository of Python scripts for free-text 
data normalization and an evaluation of the application of 
these scripts to two different sets of biomedical data from 
the IEDB, an age dataset and a data-location dataset.

Variance, a term that this paper uses to refer to dif-
ferences in representations of information that do not 
change meaning, is a key problem of free-text nor-
malization. Free-text data can contain several different 
kinds of variance. Character variance (such as differ-
ences in diacritic usage, whitespace, or encoding) dif-
ferentiates data items like “6–8 weeks” and “6–8 weeks”. 
Word-level variance, which includes misspellings, 
abbreviations, synonyms, and colloquialisms, differ-
entiates data items like “6–8  weeks” and “6–8 wks”. 
Phrase-level variance includes the ways that one idea 
can be expressed with different permutations of words, 
and it differentiates data items like “6–8 weeks” and “6 
to 8  weeks”. The data items “6–8  weeks”, “6–8  weeks”, 
“6–8 wks”, and “6 to 8 weeks” all mean the same thing, 
but in their unstandardized free-text forms, they are all 
parsed as distinct. The aim of free-text normalization 
is to ensure that data items that mean the same thing 
look the same way. The extent to which each of those 
three types of variance might exist in a particular data-
set is highly dependent on the nature of the data. Text 
normalization has been applied to a variety of domains, 
including use on text from social media [4]. Domain-
independent normalization strategies must be able to 
parse diverse forms of textual variance, as data from 
different domains presents unique challenges, e.g., the 
variance in a biomedical dataset is likely to be differ-
ent than that of a dataset of text from social media. 
Normalization of text from social media, for instance, 
faces distinctive challenges resulting from use of short-
form abbreviations (e.g., “nite” for “night” or “gr8” 
for “great”), intentional misspellings for effect (e.g., 

“soooooo great”), and emoticons (e.g., “ < 3”), which 
have hindered the performance of automated tasks 
like machine translation on text from social media [4]. 
These text features are unlikely to be found in biomedi-
cal datasets, which contain their own distinctive forms 
of variance, including uncommon technical terminol-
ogy, symbols, and abbreviations, like occurrences of the 
character μ, which is otherwise uncommon in English 
text, in the unit “μg” (“micrograms), and the use of “ug” 
and “mcg” as alternatives. To be broadly applicable to 
free-text datasets of all sorts, a free-text normalization 
tool must be able to address all three types of variance 
in a way that is flexible enough to account for different 
datasets’ unique normalization needs.

There is a robust history of development of automated 
tools for addressing some types of variance, such as spell-
check technologies, but there are comparatively few holis-
tic tools designed to normalize dataset variance at the 
character, word, and phrase levels, though the prolifera-
tion of LLMs has led to the use of a variety of LLM-based 
tools for text normalization. However, there remains a 
use-case for non-LLM-based tools for datasets with fea-
tures such as uncommon data elements, which tend to 
decrease the performance of LLM-based-tools (see the 
Evaluating the Utility of ADP and Other Tools subsection 
in the Discussion section below). To that end, we created 
the non-LLM-based free-text normalization tool ADP, 
which stands for Adaptable, user-Dependent, and Precise. 
In this paper, we examine the application of ADP to data 
from two free-text fields from the IEDB: the “age” field, 
which contains subject ages, and the “data location” field, 
which contains information about data provenance, both 
of which were accessed using SQL queries.

The age dataset records the ages of subjects in inves-
tigations archived in the IEDB. It contains 7,151 total 
unique organism-age pairs (e.g., age: “6–8  weeks old”, 
organism name: “Mus musculus C57BL/6”), meaning 
some age values are duplicated in that dataset because 
they occur with multiple organisms; there are 4,095 
unique age value strings. Strings in the age dataset typi-
cally contained one piece of information per string, and 
where list-like strings were present, they were legiti-
mate lists ostensibly linked to studies that investigated 
subjects at multiple specific ages, e.g., the data item 
“21, 27 and 36 weeks”.

The data-location dataset the provenance of data 
from an IEDB-curated manuscript. It contains 251,810 
unique data-location strings, such as “Cited reference 
[PMID: 16472860]”. In contrast with the age dataset, 
many strings in this dataset contained several individu-
ally valid data locations in a single line, such as “Data 
set S1 and S11 and Figs.  1, 2, 3, and 4”.  See Table  1 
below for further examples from each dataset.
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The data in both of these datasets were input into the 
free-text “age” and “data location” fields by the human 
curators who enter publication data into the IEDB. 
Since the start of the IEDB’s data collection process in 
2004, these fields have been collected as free-text data 
because the diversity of values and formats present 
among the data made it impossible to develop a single 
standardized input format that would work for all data 
items from all publications. For the age field, subject 
ages reported in publications frequently including com-
plex information in several formats (e.g., multiple age 
ranges, statistical information like means and medians, 
life stages, etc.), and for the data-location field, it may 
be necessary to include publication-specific section 
titles or individual publication names, etc., that are not 
found in an existing structured vocabulary. Even after 
standardization, the values and formats of these fields 
remain diverse. As both fields are input as free-text, we 
regard the individual data items that result from this 
process as unstructured data because they are not in a 
singular standardized format.

Methods
ADP is a non-fully-automated normalization tool that 
enables a user to create standardization rules and apply 
them to datasets, which is available on GitHub [5]. The 
ADP normalization scripts are written in Python version 
3.10. The core normalization scripts import the libraries 
os, re, and sys from the Python Standard Library and the 
non-native library editdistance (imported as ed). ADP is 
open-source software licensed under GNU GPL-3.0.

ADP’s three core normalization scripts (char_normal-
izer.py, word_normalizer.py, and phrase_normalizer.
py) address the three types of variance outlined in the 
introduction: character-, word-, and phrase-level vari-
ance. At the character and word stages, ADP also logs a 
Levenshtein distance score for each data item to indicate 
the extent of the changes made in that stage. ADP uses a 
script (calculate_metrics.py) to pull relevant metrics from 

the normalized output files and generate figures using the 
Python libraries ast, math, matplotlib.pyplot (imported 
as plt), pandas (imported as pd), seaborn (imported as 
sns), and warnings.

ADP text normalization workflow
Action decision‑based normalization of characters and words
While standardizing character variance can be as simple 
as selecting acceptable special characters and determin-
ing case-sensitivity of the data, standardizing word-level 
variance involves identifying and correcting misspell-
ings in free-text data, a process which is well-known to 
be “cumbersome” [4]. Normalization tools must also be 
able to handle “non-standard words,” including numbers, 
acronyms, and other abbreviations [6]. Some existing 
word normalization tools overcorrect and have higher 
rates of “unresolved errors,” or incorrectly-spelled words 
that the tool swaps with a context-incorrect word; others 
tend to undercorrect, e.g., by failing to recognize “cant” 
as a misspelling of “can’t” [4]. ADP uses an iterative char-
acter and word normalization process designed to prior-
itize accuracy of outputs.

The character and word normalization scripts share a 
similar rule-building workflow. When one of these two 
scripts is run on a dataset for the first time, it identifies 
distinct text units (characters or words, which for ADP’s 
purposes is a sequence of characters delineated by one 
of several common separators, like hyphens, spaces, or 
punctuation, or the start or end of a string) and creates a 
review file to be used for normalization rule-setting.

The review file is a TSV containing one row for each 
distinct character—except lowercase letters, digits, and 
a small number of basic punctuation characters, which 
are treated as valid for character normalization—or word 
found in the file. It has columns for the character or 
word, its context (i.e., the data item strings in which that 
character or word was found), and a count of its occur-
rences. The review file also has four action columns with 
the headings “replace_with”, “remove”, “invalidate”, and 
“allow”. Entering text in one of the action columns (which 
we refer to as “making an action decision”) sets a rule for 
the behavior of the script concerning the character or 
word in that row during future runs of the script. Table 2 
describes how entering text in one of the action columns 
modifies the behavior of the script.

Every time the script is rerun, it moves any review file 
rows in which an action decision has been made to a ref-
erence file, which serves as a bank of rules for the behav-
ior of the script.

Tables  3 and 4 contain examples of the rules applied 
to these datasets at the character and word stages. These 
tables are intended to summarize the implementations 
of the example rules and are abridged from the reference 

Table 1  Example age & data-location data items

a The data-location dataset contained a large number of Protein Data Bank (PDB) 
identifiers that parsed as distinct words. These IDs, which follow a standard 
four-character alphanumeric format, were selected using a regular expression 
and then mass-allowed. There are 186 non-PDB-ID words in the data-location 
reference file

Age Dataset Data-Location Dataset

6 to 8 weeks Figures 2, 3, 4, 5, 6, S4, S5, S7, 
Tables 2, 3, 4 and 5

Adults (pregnant) PDB: 5EC1, 5EC2, 5EBW, 5EBL, 5EBM

Mean age of 32.2 years 
with a range from 18 to 49 years

Richardson et al. Virol 1986;155:508–
523 [PMID: 3788062]

18–22 months or 4–6 months pg. 1410 and J. Virol. 61:1358–1367
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files. The context column, which contains a sample (up to 
300 characters in length) of data items containing a given 
character or word, has been omitted here to improve the 
readability of this table in the manuscript, and the indi-
vidual action decision columns are condensed into the 
singular “Rule” column in the tables below. Please refer 
to the reference files in the ADP repository to see the full 
versions of the tables and all rules applied at the charac-
ter and word stages [5].1

Following the transfer of rows with new action deci-
sions from the review file to the reference file, the script 
runs its normalization functions, applying the rules based 
on the user’s action decisions to the dataset, and it checks 

for any new text units that do not have a line in either the 
review file or the reference. See Fig. 1 for a visual repre-
sentation of how this process works during the character 
normalization stage.

In the character normalization stage, data items pass 
validation if in the second reference check (as shown in 
the diagram), only allowed characters are found in the 
string; otherwise, validation fails. Only data items that 
pass character-level validation are normalized in the 
word normalization stage. Data items pass word-level 
validation if in the second reference check, only allowed 
words are found in the string; otherwise, validation fails.

Pattern‑based normalization of phrases
ADP phrase normalization uses a process of matching phrase 
structures to user-defined patterns. This process begins in the 
word normalization stage. In the word review and reference 
TSV, there is an additional “category” column. Adding text to 
this column in the row of a particular word asserts the cat-
egory to which that word belongs, e.g., in rows for the words 
“week”, “month”, and “year”, the category has been set to “unit” 
in the word reference TSV for the age dataset.

When the phrase normalization script is called, it 
divides the data item into individual words as was done 
for the word normalization phase. The script tracks the 
word’s place in the string and any delimiters (including 
punctuation, whitespace, and the start or end of a string) 
on either side of the word. Then, it searches the word 

Table 2  Action decisions

Action Column Function

replace_with This character or word is replaced 
with the text that is entered in this 
column

remove This character or word is removed 
from the data items in which it 
occurs

invalidate This character or word remains as-is, 
and data items containing this char-
acter or word will fail validation

allow This character or word remains 
as-is, and this character or word 
is considered an accepted text unit 
for validation

Table 3  Sample character normalization rules & applications to data items

Dataset Char Occurrences Example string Rule Post-normalization string

age  =  65 “mean age = 30 years” Allow “mean age = 30 years”

age – 31 “20–67 years” Replace with:
-

“20–67 years”

data-loc & 53 “Abstract & p. 664” Replace with:
and

“abstract and p. 664”

data-loc € 10 “Fig. 1 and Fig. 1â€”figure supple-
ment 1 and PDB 6HD8”

Invalidate Invalid, not normalized

Table 4  Sample word normalization rules & applications to data items

Dataset Word Occurrences Example string Rule Post-normalization string

age old 710 “6–10 week old” Remove “6–10 week”

age wk 57 “8–10 wk” Replace with:
week

“8–10 week”

data-loc fig 285 “Figs. 1 and 2” Replace with:
figure

“Fig. 1 and 2”

data-loc file 148 “additional file 1” Allow “additional file 1”

1  The reference files can be found at the following paths in the repository:
age/output_files/char_reference.tsv.
age/output_files/word_reference.tsv.
data_loc/output_files/char_reference.tsv.
data_loc/output_files/word_reference.tsv.
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Fig. 1  Flowchart of ADP character and word normalization processes
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reference file to see if a category has been assigned to the 
word; if not, it categorizes the word as “unknown”. The 
script produces a string that uses a simple grammar to 
indicate the categories of each word and their position in 
the string, e.g., the age datum “6 week mean” is parsed as 
“[number(0)][unit(1)][statistical(2)]”. The phrase categori-
zation string is stored in a dedicated column in the phrase 
normalization output file to enable the user to determine 
which phrase structures occur the most frequently in a 
dataset and develop normalization rules accordingly.

Like the character and word normalization phases, the 
phrase normalization phase depends on the user to create 
rules for distinct phrase structures. A dataset’s phrase-type 
ruleset (found in age_phrase_types.tsv and data_loc_phrase_
types.tsv) establishes a name for a pattern, indicates whether 
or not it is a valid pattern (e.g., in the age dataset, a data item 
consisting of a number and a unit is valid, but a number by 
itself is not, as being unitless makes its meaning uncertain), 
and sets a rule for how phrases that match that pattern 
should be formatted. See Table 5 for examples.

The categorization string, e.g., [number(0)][unit(1)][sta-
tistical(2)] (extracted from “6 week mean”), is matched to 
a pattern—in this case, the pattern called “statistical”—
which matches to the structures of data items that provide 
a mean or median age value. In the “standard_form” col-
umn in the phrase-type ruleset, the user can specify how 
data items matching a pattern should be formatted. In the 
case of “6 week mean”, the standard form is represented 
as “[2]: [0] [1]”, in which the numbers in brackets refer to 
the indices from the categorization string, and how they 
should be arranged within the standard form string.

The phrase normalization script generates a blank 
phrase-type ruleset file if none exists, but if one exists, 
it checks each data item’s categorization string against 
any patterns in the file and applies the pattern in the 
“standard_form” column if applicable by inserting words 
where their indices are placed in the standard form 
string. Through this process, “6 week mean” is rearranged 

to match the standard form string “[2]: [0] [1]”, so the 
output for that data item is “mean: 6  week”. This work-
flow ensures that data items with diverse structures, 
like “6  week mean” and “mean = 6  week”, take on a sin-
gle standard phrase structure, like “mean: 6  week”. The 
specific structure we chose for data items of this type is 
arbitrary; the crucial part is the ability to quickly modify 
diversely expressed data items into one standard style.

Table  5 contains sample rows from both datasets’ 
phrase type tables as examples of the rules applied to 
these datasets. To see the full phrase type tables and all 
normalization rules applied at the phrase stage, please 
refer to the relevant files in the ADP repository [5].2

Patterns designated as invalid, like the “unitless range” 
pattern in the age dataset or the “number” pattern from 
the age dataset, are used to catch and invalidate unusable 
data: unitless ranges, for instance, are invalidated at the 
phrase stage because the variety of units used in other age 
data items renders the meaning a data item like “8–10” 
ambiguous. Lone numbers in the data-location dataset 
suffer from the same problem, as “3” could refer to a page 
number, a line number, a section, etc. For a more thorough 
explanation of why invalidating these data items is a desir-
able outcome of the normalization process, please see the 
Validity Rate by Dataset and Stage section below. If a data 
item matches to an invalid pattern, it fails validation at the 
phrase stage and is not normalized. Data items that match 
to valid patterns, like “range” or “pdb id”, have their com-
ponent words rearranged to match the format specified in 
the standard form column to bring them into alignment.

Only data items passing validation at the character and 
word stages are normalized at the phrase stage. At the 
phrase stage, data items pass validation only if they match 
to a pattern designated as valid. The phrase normaliza-
tion and validation processes are visualized in Fig. 2.

Table 5  Sample phrase normalization rules

Dataset Pattern name Pattern Valid? Standard form Example matched phrases Example normalized phrases

age range [number(0)] [range_indica-
tor(1)] [number(2)] [unit(3)]

Y [0]-[2] [3] “6 to 8-week”,
“​​44.9 to 74.1 year”,
“36 to 68.2 year”

“6–8 week”,
“44.9–74.1 year”,
“36–68.2 year”

age statistical [statistical(0)] [number(1)] 
[unit(2)]

Y [0]: [1] [2] “mean 29.8 year”,
“mean: 30 year”,
“median: 7.5 year”

“mean: 29.8 year”,
“mean: 30 year”,
“median: 7.5 year”

age unitless range [number(0)] [range_indica-
tor(1)] [number(2)]

N “8–10”, “31–80”, “12–20” N/A

data-loc pdb id [pdb(0)][pdb_id(1)] Y [0] [1] “pdb 1mfd”, “pdb 1rzj”, “pdb 1rzk” “pdb 1mfd”, “pdb 1rzj”, “pdb 1rzk”

data-loc loc number [location(0)] [number(1)] Y [0] [1] “page 11,782”, “information 9”, 
“data 1”

“page 11,782”, “information 9”, 
“data 1”

data-loc number [number(0)] N “3”, “1”, “151” N/A

2  The phrase type files can be found at the following paths in the repository:
age/input_files/age_phrase_types.tsv.
data_loc/input_files/data_loc_phrase_types.tsv.
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Fig. 2  Flowchart of ADP phrase normalization processes
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Measuring string change during normalization
The ADP normalization code imports the package edit-
distance to measure the Levenshtein distance between the 
inputs and outputs in the character and word normaliza-
tion stages. The normalized output files contain dedicated 
columns for distance scores comparing the character-nor-
malized string against the original and the word-normalized 
string against the character-normalized string. Leven-
shtein distance ceases to be a sensible measure of continu-
ity between input and output at the phrase normalization 
stage, as desirable and innocuous changes in word order can 
produce high Levenshtein distance scores. For instance, the 
hypothetical age data items “18 years average” and “average 
18  years” have a Levenshtein distance of 14 despite being 
semantically identical. While identifying string meaning is 
not within ADP’s scope, it may prove useful in the future to 
implement existing Python tools to calculate semantic or 
cosine similarity as a metric of change at the phrase stage.

Modular normalization & accessory stages
The ADP normalization process is designed to be modu-
lar; because it is split into discrete processes for charac-
ter, word, and phrase normalization, it is possible to plug 
in accessory stages to address dataset-specific normali-
zation needs that are not easily handled within the pre-
defined stages. The data-location dataset, for instance, 
implements an accessory stage to split list-like data items 
into individual strings for data location.

Data‑location splitting
Because the data-location dataset contained list-like 
data items in which several distinct data locations were 
included in a single data item (e.g., the real data item 
“Fig.  2A,B,C, Fig.  6.”), phrase normalization would be 
much more difficult without splitting list-like inputs 
into multiple items that could then be normalized 
independently. The script functions as a pre-phrase-
normalization stage for the data-location dataset; that 
script creates multiple rows from list-like data items, 
transforming the single data item “Fig. 2A,B,C, Fig. 6.” 
into a set of segments including “Fig.  2a”, “Fig.  2b”, 
“Fig.  2c”, and “Fig.  6”. Each segment is separated into 

a distinct row, which is assigned a post-splitting index 
and an original index to be able to both track segments 
individually and trace them back to the list-like data 
items from which they were originally split.

When phrase normalization is applied to the data-
location dataset, because the segments have been split 
into their own rows, they are treated as distinct phrases, 
allowing all of the “figure x” example segments above to 
match to a single pattern, rather than needing dedicated 
patterns to match to each list-like permutation.

Sample normalized data items
Table 6 contains sample data items from the age and data-
location datasets. The columns represent the progression 
of these data items through the normalization process, 
with changes made by the character, word, and phrase 
normalization parts of the code represented in those 
respective columns. Note that for the data-location data-
set, the list-like phrase-normalized strings are split into 
individual TSV rows for each data item in the list, e.g., the 
single input data item “Fig. 2A,B,C, Fig. 6.” becomes four 
output data items: “Fig. 2a”, “Fig. 2b”, “Fig. 2c”, and “Fig. 6”.

Results
Using ADP’s normalization scripts on the IEDB age and 
data-location datasets demonstrates that it is possible to 
use ADP to effect significant improvements to the overall 
standardization of a dataset.

User action efficiency
ADP is a tool for the development and implementation 
of standardization rules. Accordingly, the thoroughness 
with which a user makes action decisions (in the charac-
ter and word stages) and builds phrase type patterns (in 
the phrase stage) determines the overall success of ADP at 
standardizing a dataset. The data presented in this manu-
script is the result of a non-exhaustive approach to both 
datasets in which rule-setting for particularly common 
characters, words, and phrases was prioritized, to repre-
sent a practical and realistic normalization outcome.

Table 7 provides an overview of the extent of the nor-
malization rule-setting done for each dataset. The “items 

Table 6  Sample data items at each stage

Dataset Before Normalization Character Normalized Word Normalized Phrase Normalized

Age Six week old six week old 6 week 6 week

Age 6–8 week 6 to 8-week old 6 to 8-week 6–8 week

Age Median age 6.3 years median age 6.3 years median 6.3 year median: 6.3 year

Data-Location Additional File 4, Tables 1 and 2 additional file 4, Tables 1 and 2 additional file 4, Tables 1 and 2 [’additional file 4’, ’Table 1’, ’Table 2’]

Data-Location Figures 2A,B,C, Fig. 6 Figures 2a,b,c, Fig. 6 Figures 2a,b,c, Fig. 6 [’Fig. 2a’, ’Fig. 2b’, ’Fig. 2c’, ’Fig. 6’]

Data-Location Figure 2A,B, Suppl Fig. 2 Figure 2a,b, suppl Fig. 2 Figure 2a,b, supplemental Fig. 2 [’Fig. 2a’, ’Fig. 2b’, ’supplemental 
Fig. 2’]
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in review” counts reflect the number of characters or 
words for which action decisions were not made at the 
time of manuscript submission. The “items in reference” 
counts reflect the number of characters or words for 
which action decisions were made. The “phrase-type pat-
terns” counts reflect the number of user-generated pat-
terns against which phrases are matched to determine 
their validity, and “valid phrase-type patterns” reflect 
how many of the defined patterns are specified as valid 
phrases.

The results presented in this manuscript are accord-
ingly the results of a non-exhaustive rule-setting effort 
intended to prioritize the creation of rules targeting high-
occurrence characters, words, and phrase patterns. More 
comprehensive normalization and higher validity rates 
at each stage could be achieved by targeting increas-
ingly lower-frequency characters, words, and phrases. 
Ultimately, reasonable stopping points will vary for each 
dataset; making action decisions and creating phrase 
patterns for increasingly infrequent characters, words, 
and phrases offers diminishing returns in overall dataset 
standardization.

The specific amount of time and effort that goes into 
creating the normalization rules varies substantially 
based on their complexity and the experience of the per-
son creating them. In our hands, we have found that one 
cycle of rule implementation and testing takes 5–20 min, 
with 5 being typical. Some rules make sense to implement 
as a group, e.g., uppercase-to-lowercase conversions at 
the character stage or plural-to-singular conversions at 
the word stage. For these, we typically make the desired 
changes in all relevant lines in the review file, rerun the 
script, and then inspect the results in the output file. We 
find that adding several rules in one cycle of implementa-
tion and testing does not substantially increase the time 
taken by that cycle. A high estimate of the time it takes to 
normalize these datasets can be calculated by multiplying 
the number of rules by the typical time of 5 min per rule, 
which translates to approximately 11 h for the age data-
set (with 131 rules) and approximately 20 h for the data-
location dataset (with 237 rules). However, in practice, 

the time it took us is significantly lower than this because 
of the efficiency added by implementing multiple similar 
rules together at one time.

Validity rates by dataset and stage
ADP validates data items at each stage. In the character 
stage, data items pass validation if they contain only char-
acters that have been marked as allowed. Data items pass 
validation at the word stage if they contain only words 
that have been marked as allowed. In the phrase stage, 
data items pass validation if they match to a pattern des-
ignated as valid. The word and phrase stages only attempt 
to normalize data items that have passed validation in 
the previous stage(s). Figure 3 shows the rates of validity 
achieved with the non-exhaustive rule-setting approach.

In the character stage, validity rates for both datasets 
are above 99%. These character validation results were 
achieved following 21 action decisions for the age dataset 
and 39 action decisions for the data-location dataset in 
the character normalization stage (see Table 7).

In the word stage, validity rates for both data sets are 
above 98%. These word validation results were achieved 
following 94 action decisions for the age dataset and 
187 action decisions3 for the data-location dataset in the 
character normalization stage (see Table 7).

The age dataset’s validity rate at the phrase stage is sig-
nificantly lower than that of the data-location dataset: 
83.8% of data items pass phrase validation in the age data-
set, while 97.9% of data items pass phrase validation in 
the data-location dataset. This is the result of a relatively 
large number of data items that match invalid patterns. 
As is recorded in the phrase-normalized age dataset 
file, of the 1019 data items that failed phrase validation, 
only 105 (1.47% of all data items) failed because they did 
not match any pattern; all the rest failed because they 
matched a pattern designated as invalid, a way to inten-
tionally eliminate non-useful data items, like numerical 
values without units in the age dataset.

Table 7  Number of action decisions by dataset

Age Dataset Data-Location Dataset

Characters in review 1 7

Words in review 84 1160

Characters in reference 21 39

Words in reference 94 5780 counting mass-allowed Protein 
Data Bank (PDB) identifiers, otherwise 
186a

Phrase-type patterns 16 12

Valid phrase-type patterns 9 11

3  186 row-by-row action decisions plus one mass-allow of Protein Data 
Bank (PDB) identifiers, as described in footnote 1, performed via regular 
expression selection of the rows containing PDB identifiers.
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Numerical exact ages without units (e.g., “7”) and age 
ranges without units (e.g., “8–10”) are designated as inva-
lid phrase types because the age dataset contains ages 
expressed in hours, days, weeks, months, and years, so 
the units of these data items are unclear, which makes 
the meaning of the data item ambiguous. From a prac-
tical perspective, queries on the age dataset must take 
units into account. If a study with its subject age listed as 
“8–10” appeared in the results of a query for studies with 
a subject age of 8–10  years, it would be troublesome if 
the “8–10” study was actually performed on mice with an 
age of 8–10 weeks old. Numerical ages without units are 
thus not useful for querying. Accordingly, we intention-
ally invalidate numerical data items without units, like 
“8–10”, so the fact that a significant number of data items 
failed phrase validation because they matched an invalid 
pattern is not a poor outcome of normalization, as it rep-
resents the elimination of non-useful data.

These phrase validation results were achieved by 
matching against 16 phrase-type patterns for the age 
dataset and 12 patterns for the data-location dataset (see 
Table 7).

It is evident that a relatively low number of user action 
decisions is sufficient to produce very high rates of valid-
ity in at least these two free-text datasets. Notably, in 
both the character and word stages, reaching similar 
results (> 99% validity in the character stage and > 98% 
validity in the word stage) in the two datasets required 
only about twice as many action decisions in the data-
location dataset as in the age dataset, despite that the for-
mer dataset is more than 35 times longer than the latter.

Accuracy of normalized outputs
While robust accuracy-checking procedures are still in 
development, a preliminary manual review of a rand-
omized subset of data items from each dataset has been 
conducted in accordance with peer review feedback. 
These preliminary accuracy tests were performed using 
200-line tables in which each line contains an input data 
item and the normalized output of that data item. The 
reviewer was instructed to mark all lines where the input 
did not mean the same thing as the output. In each test, 
a small, randomized number of intentional procedurally 
generated errors were included. Table 8 shows the results 

Fig. 3  Validation results by dataset and stage
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of this preliminary manual review; “unaltered lines” refer 
to the number of data items in the sample minus the 
number of lines with intentional errors, and identified 
error rate is calculated as the percentage of data items 
with genuine errors among the unaltered lines.

The manual review of the data-location dataset 
revealed error-introducing issues with the code that 
splits data-location strings like “Fig. 1, 2, and 4” into its 
component parts (e.g., “Fig.  1”, “Fig.  2”, “Fig.  4”) to be 
parsed as strings individually. The second manual review 
of the data-location dataset was performed following 
fixes to issues discovered through the first manual review, 
and this second round revealed other issues; as of the 
time of writing, fixes for these issues are in progress and 
are a high priority. Importantly, every issue found in the 
data-location dataset in both reviews was a product of 
errors in the splitter code, an accessory module which is 
not part of the core normalization toolset; the reviewer 
found no errors that could be attributed to the core nor-
malization functions.

This preliminary review is small and non-comprehen-
sive. Further evaluation of the accuracy of ADP nor-
malization using more extensive manual review and 
other methods is an imminent next step. As part of this 
process, we also intend to test accuracy comparatively 
between ADP and similar tools.

Extent of change to data items
In the character and word stages, the values in the Lev-
enshtein distance score columns (see Measuring String 
Change During Normalization above) serve as indica-
tors of the extent to which strings are modified during 
the normalization process. Figures 4 and 5 show the fre-
quency distributions of Levenshtein distance scores by 
dataset and stage. Note that the word stage figures for 
both datasets use a logarithmic scale for clarity.

For the age dataset, Levenshtein distance score fre-
quency graphs show that most data items receive little 
modification during the character and word stages. The 
notable spike at a score of 1 in the word stage results from 
the abundance of age data items with plural units that 
were normalized to singular; the score of 1 frequently 
represents the removal of an “s” from “years”, “months”, 
or “weeks.”

In the data-location dataset, the uniform nature of 
much of the dataset (namely the > 200,000 lines of HLA 
Ligand Atlas URLs) produces other spikes in the char-
acter stage Levenshtein distance frequency chart. The 
spike at 9 is one such case. Of the 57,517 data-location 
data items with a Levenshtein distance score of 9 at the 
character stage, 91% (52,522) are HLA Ligand Atlas URLs 
that have paths that a string of 9 uppercase letters (e.g., 
“https://​hla-​ligand-​atlas.​org/​pepti​de/​AAAAA​QSVY”). 
The URLs resolve in the same way with lowercase and 
uppercase letters in that path; the former URL is func-
tionally equivalent to “https://​hla-​ligand-​atlas.​org/​pepti​
de/​aaaaa​qsvy”, so normalizing to lowercase does not 
result in any lost meaning. Levenshtein distance scores 
at the word stage cluster strongly around 0 for the data-
location dataset, a reflection of the fact that a large por-
tion of the dataset, namely the URLs, received no word 
normalization.

Levenshtein distance ceases to be a useful metric at 
the phrase stage, at which it is often desirable to make 
significant changes to the overall structure of the data 
item. Straightforward and benign changes like altera-
tions in word order produce high Levenshtein dis-
tances. Accordingly, Levenshtein distance scores are 
not tracked at the phrase stage.

Data-location phrase splitting and phrase-part 
validity.

Because the data-location dataset included a high num-
ber of list-like inputs made up of several individual data 
locations, the data items in that dataset were put through 
a splitter script that divided list-like data items so that 
each output datum referenced exactly one data location 
(see Data-Location Splitting above).

For this dataset, we calculate additional relevant met-
rics. Split phrase count (listed in the split_phrase_count 
column) refers to the total number of outputs split out of 
an original input data item; e.g., the input item “Table  8 
and Fig.  1”, which is split into the data items “Table  8” 
and “Fig.  1”, has a split phrase count of 2. Validity rate is 
the number of valid output data items divided by the split 
phrase count. A validity rate of 1 means that every output 
data item that derives from a particular input data item is 
valid, while a validity rate of 0 means that none of those 
output data items are valid. Split phrase count and validity 

Table 8  Preliminary manual review results

Test Intentional Errors Unaltered Lines Intentional Errors 
Identified

Genuine Errors 
Identified

Identified 
Error Rate

Age 9 191 7 0 0%

Data-Location 1 7 193 7 9 3.63%

Data-Location 2 3 197 2 5 2.54%

https://hla-ligand-atlas.org/peptide/AAAAAQSVY
https://hla-ligand-atlas.org/peptide/aaaaaqsvy
https://hla-ligand-atlas.org/peptide/aaaaaqsvy
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Fig. 4  Levenshtein distance scores by stage, age dataset
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Fig. 5  Levenshtein distance scores by stage, data-location dataset
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rate (along with all other analytics, like Levenshtein dis-
tance scores) are recorded in the phrase-normalized output 
file exactly once for each input data item so that means and 
frequency distributions of those metrics are not skewed by 
the row-count increase that occurs during phrase splitting.

As is evident in Fig. 6, the large number of HLA Ligand 
Atlas URLs in the dataset concentrate both the split 
phrase count and validity score around 1, as the URLs 
are all unsplit and valid. Including URLs, the mean split 
phrase count is 1.24 (standard deviation 0.92), and the 
mean phrase validity rate is 1.00 (standard deviation 0.06).

It is noteworthy that the data items with high split 
phrase counts tend towards high validity rates. It appears 
that those data items tend to be simple and orderly 
lists, such as the data item “Figs.  1, 2, 3, 4, Supplemen-
tary Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13”, which has a 
split phrase count of 16 and a validity rate of 1.0. Such 
data items are simpler to split, and their split outputs are 
individually simpler and more readily matchable to basic 
phrase patterns than the less uniform lists that occur 
towards the middle of the split phrase count range, such 
as “Table 3 and Figs. 1 and 2 and Supporting Information 
S2 Figure” (split phrase count 4, validity rate 0.75).

When examining only non-URL data items, strong 
clustering around a validity rate of 1 remains, but with 

a more obvious spread of split phrase count values, as is 
evident in Fig. 7. Excluding URLs, the mean split phrase 
count is 3.19 (standard deviation 1.91), and the mean 
phrase validity rate is 0.96 (standard deviation 0.17).

The implementation of data-location phrase split-
ting achieves very high rates of validity even among the 
complicated minority made up of non-URL data items.

Discussion
Measuring normalization empirically
The ADP toolset provides several metrics by which a 
user can measure the extent to which ADP normaliza-
tion modifies the data, including Levenshtein distance 
scoring and validation pass/fail rates. These metrics are 
intended to approximate the degree to which the ADP 
normalization code improved the overall normality of 
the data without losing the original string’s meaning. 
However, empirically evaluating the success of the nor-
malization process as a whole remains difficult due to 
the lack of a clear universal metric for dataset normaliza-
tion. A useful future direction would be to establish an 
empirical way to measure degrees of standardization in 
unstructured datasets; ideally, such a metric would allow 
comparisons between free-text datasets’ spelling accuracy, 
adherence to grammar, and stylistic consistency.

Fig. 6  Scatter plot of split phrase count and phrase validity rate
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Evaluating the utility of ADP and other tools
While the age and data-location datasets are distinct 
enough in size, content, and style to make a case for the 
flexibility of the ADP rule-setting framework for nor-
malization, its use on these two datasets is not sufficient 
to demonstrate that ADP is a useful tool for a truly wide 
range of free-text datasets. Further experimentation with 
other free-text datasets will be necessary to ensure that 
ADP normalization is adaptable enough to be used with a 
diverse range of free-text datasets. Promising future can-
didates to test ADP’s generalizability are the IEDB’s other 
free-text data fields, which would benefit from standardi-
zation for the same reasons as the age and data-location 
fields. Of particular interest is the “dose” dataset, which 
documents dosages of substances administered as part of 
an experiment and which contains several thousand dis-
tinct lines of free-text data. Dose data items tend to be 
long and diverse, such as “6 dose(s) of 0.1 mg in saline” 
and “Four doses of epitope covalently linked to BSA in 
CFA administered at intervals of 1 week”. It appears that 
this dataset would benefit from several standardization 
rules applied to the age and data-location datasets, like 
the conversion of spelled-out numbers to numerals, e.g., 
converting “Four” to “4” in the second data item above. 
The dose dataset’s complex phrase structures could pose 

a challenge at the phrase normalization stage, though it 
may benefit from splitting in a manner like the data-loca-
tion dataset.

Developing frameworks for testing the accuracy of 
ADP’s outputs compared to other normalization meth-
ods is an active priority. ADP’s user-dependence is a 
design feature that was implemented specifically because 
we hypothesize that it will result in higher precision of 
normalization results compared to predictive normali-
zation tools, which can struggle with certain context-
specific normalization decisions, like handling instances 
of “cant” occurring as a synonym of “slang” rather than a 
misspelling of “can’t”, that humans can make quickly and 
accurately [4]. Future testing will likely include evaluating 
how effectively ADP normalization preserves the mean-
ing of data items throughout the normalization process 
compared to analogous normalization tools. Performing 
further accuracy testing, both through more extensive 
random-sample review as described in the Accuracy of 
Normalized Outputs section above, as well as through 
measures like semantic similarity, is a critical next step 
for this process. Comparison between ADP and large lan-
guage model-based tools is of particular interest.

Many recent tools for free-text standardization 
make use of large language models (LLMs) to perform 

Fig. 7  Scatter plot of split phrase count and phrase validity rate, excluding URLs 
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standardization tasks. One such tool is CleanAgent, 
which uses an LLM agent to identify the types of data 
(e.g., phone number, email address, date) in each column 
of a CSV, write and run Python code to standardize each 
column’s data based on its type, and interact with the user 
throughout the standardization process [7]. At the time 
of the writing of this manuscript, the authors were una-
ble to run CleanAgent on either the age or data-location 
datasets; we have reached out to the developers of Clea-
nAgent about a recurring error message. We aim to do 
a direct comparison between the free-text normalization 
outcomes from CleanAgent and ADP in the future. Based 
on its demonstration publication, CleanAgent appears to 
be an efficient solution to the problem of standardizing 
simple data items (e.g., dates or phone numbers), though 
in that publication, CleanAgent did not identify a data-
type for the columns named “AGE” and “weight__” [7], 
suggesting that it may be less well-suited for standardiz-
ing columns of data that lack an obvious standard form. 
Its use-case is different from ADP’s, which requires more 
of the user’s time and effort but is designed to handle 
data items of that sort.

ChatGPT also been employed for conversions between 
structured and unstructured data formats in experi-
ments on biomedical data, such as those described in 
the 2024 analysis by Yoon et al., which evaluated multi-
ple types of transformations between structured data 
(like ICD codes or tables of laboratory results) and 
unstructured text [8]. Yoon et  al.’s results indicate that 
the GPT-3.5 model performs better on conversion tasks 
involving more common data items: in a task involving 
conversion of ICD-9-CM codes to and from natural lan-
guage, the model displayed a linear reduction in accu-
racy among less frequently-used codes, exemplified by 
an accuracy of 73.3–91.8% for ICD-9-CM codes within 
the top 1000 by frequency, which decreased to 54.8–91% 
among ICD-9-CM codes outside of the top 3000 by fre-
quency [8]. Similarly, the model performed better in a 
task that required identifying prescription drugs listed 
in unstructured text from discharge summaries when it 
could match drugs by active ingredient, e.g., matching 
“paracetamol” with “acetaminophen”, rather than strictly 
adhering to the original terminology [8]. These results 
suggest that GPT-3.5-based tools are best suited for text 
standardization on datasets featuring common data, like 
the particularly frequent ICD-9-CM codes, and datasets 
for which synonym substitution is acceptable.

The newer GPT-4 model has been shown to outper-
form GPT-3.5 across multiple domains, indicating that 
it and other more advanced LLMs may be able to pro-
vide better results than GPT-3.5 [8]. Due to the ongo-
ing rapid advancement in the performance of newer 
LLMs like GPT-4o and DeepSeek, we expect that these 

contemporary LLMs would outperform older models like 
GPT-3.5 on data standardization tasks, and future LLMs 
will likely outperform today’s models. As output accuracy 
is a vitally important feature of standardization processes 
for biomedical datasets, an error rate of 0 is often neces-
sary. If LLM advancements do indeed result in higher out-
put accuracy, these advancements will further increase 
the utility of LLMs for biomedical data standardization. 
Nevertheless, there remains a use-case for standardization 
tools designed for data with features that tend to decrease 
LLM performance, like data that does not feature common 
elements or for which synonym substitution is unaccepta-
ble. ADP is designed for this niche, as its non-fully-auto-
mated design enables complete and precise control over 
its outputs regardless of the features of the data itself. The 
amount of fine-tuning possible within ADP’s normaliza-
tion process is intended to enable high output accuracy. 
Our preliminary accuracy testing, which resulted in an 
identified error rate of 0–3.63%, as described in the Accu-
racy of Normalized Outputs section, suggests that ADP 
can achieve higher accuracy than the LLM-based tech-
niques for conversion of natural language to structured 
data that are described in [8], though more work is nec-
essary to fully assess this. The authors intend to conduct 
further empirical evaluation of the accuracy of ADP and 
comparable LLM-based normalization tools in the future.

Productive value of results
These datasets contain all distinct age and data-location 
values recorded in the IEDB, but many of the individual 
values in these datasets represent thousands of instances 
of that value. As a result, the effect of normalizing these 
datasets is multiplied. The IEDB records more than 18 
million total age values and more than 21 million total 
data-location values [5], so applying normalization to 
these data values in the IEDB will accordingly produce 
significant improvements to findability and usability of 
millions of lines of data.

Improving data findability
Using the ADP normalization toolkit, we normalized 
the age and data-location free-text datasets from the 
IEDB, two datasets with very different content and nor-
malization needs, in such a way that renders the data in 
these datasets searchable, findable, and ontologizable in 
a way that they simply were not before. Standardizing 
the text in these datasets will enable the forthcoming 
implementation of dedicated search tools for these data-
sets in the IEDB. For instance, IEDB users could query 
for data from experiments on mice less than 28  days 
old and receive results within that range including ages 
originally expressed with varying formats and units (e.g., 
‘10–20  days old’, ‘2  days’, ‘24  h’, ‘1–3 wks’). Similarly, by 
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ontologizing categorical age data items like ‘juvenile’, 
‘calf ’, ‘foal’, ‘piglet’, or ‘child’, we can enable searches for 
pre-adult life stages across species.

The FAIR data principles identify searchability (princi-
ple F4) as a critical aspect of data findability, so improv-
ing the IEDB’s search functionalities is core to the IEDB’s 
effort to improve its overall data FAIRness [9]. The data-
location dataset in particular was identified as a promis-
ing candidate for work to improve the IEDB’s FAIRness 
in a 2018 analysis of the IEDB’s adherence to the FAIR 
standards [3]. Accordingly, the normalization performed 
on the data-location dataset using ADP completes 
that long-standing goal and demonstrates the IEDB’s 
ongoing commitment to improving data FAIRness in 
immunology.

Enabling ontologization of free‑text data
By standardizing the characters, words, and phrase 
structures in free-text datasets, ADP makes it easier to 
ontologize those datasets. Several prior publications 
have illustrated the benefits of linkages between IEDB 
data and formal ontologies [2, 3, 10, 11]. Already, many 
IEDB data fields are mapped to terms from a wide range 
of ontologies, such as the “Organism” field being mapped 
to NCBI Taxonomy [12] terms and the “Evidence Code” 
field being mapped to Evidence Ontology [13] terms [14]. 
By standardizing the terms in use in the age and data-
location datasets, ADP normalization is an effective step 
towards ontologizing the data in these fields. In particu-
lar, promising next steps include the ontologization of 
units in the age dataset via the Unit Ontology [15] and 
document parts via the Information Artifact Ontology 
and Ontology for Biomedical Investigations [16]. Should 
ADP prove effective on other free-text datasets within 
and beyond the IEDB, it will make it possible to reap the 
benefits of ontologization from large amounts of previ-
ously underutilized biomedical data.

Conclusions
While further testing is necessary to validate ADP nor-
malization on other datasets, preliminary evaluations of 
its application to the age and data-location datasets sug-
gest that ADP normalization can produce high rates of 
output validity in diverse free-text datasets following a 
relatively low number of user action decisions.

The Immune Epitope Database (IEDB) has made sig-
nificant efforts over the past several years to improve its 
adherence to FAIR data standards through improvements 
to findability and interoperability of its data. Creating 
linkages with formal ontologies is a pillar of the IEDB’s 
efforts to improve interoperability, but these efforts 
have been concentrated on standardized datasets. The 

ability to standardize free-text datasets would enable fur-
ther FAIRness and more effective utilization of the vast 
quantities of free-text data in the IEDB. Our preliminary 
results are promising indications that ADP normaliza-
tion can standardize free-text datasets efficiently and 
accurately.
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