
Duesing et al.
Journal of Biomedical Semantics (2025) 16:5
https://doi.org/10.1186/s13326-025-00324-7

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of
Biomedical Semantics

Standardizing free-text data exemplified
by two fields from the Immune Epitope
Database
Sebastian Duesing1*, Jason Bennett1, James A. Overton2, Randi Vita1 and Bjoern Peters1,3*

Abstract

Background While unstructured data, such as free text, constitutes a large amount of publicly available biomedical
data, it is underutilized in automated analyses due to the difficulty of extracting meaning from it. Normalizing free-
text data, i.e., removing inessential variance, enables the use of structured vocabularies like ontologies to represent
the data and allow for harmonized queries over it. This paper presents an adaptable tool for free-text normalization
and an evaluation of the application of this tool to two different fields curated from the literature in the Immune
Epitope Database (IEDB): “age” and “data-location” (the part of a paper in which data was found).

Results Free text entries for the database fields for subject age (4095 distinct values) and publication data-location
(251,810 distinct values) in the IEDB were analyzed. Normalization was performed in three steps, namely character
normalization, word normalization, and phrase normalization, using generalizable rules developed and applied
with the tool presented in this manuscript. For the age dataset, in the character stage, the application of 21 rules
resulted in 99.97% output validity; in the word stage, the application of 94 rules resulted in 98.06% output validity;
and in the phrase stage, the application of 16 rules resulted in 83.81% output validity. For the data-location dataset,
in the character stage, the application of 39 rules resulted in 99.99% output validity; in the word stage, the application
of 187 rules resulted in 98.46% output validity; and in the phrase stage, the application of 12 rules resulted in 97.95%
output validity.

Conclusions We developed a generalizable approach for normalization of free text as found in database fields
with content on a specific topic. Creating and testing the rules took a one-time effort for a given field that can now
be applied to data as it is being curated. The standardization achieved in two datasets tested produces significantly
reduced variance in the content which enhances the findability and usability of that data, chiefly by improving search
functionality and enabling linkages with formal ontologies.

Keywords Unstructured data, Free-text data, Data normalization, Data standardization, Immune epitope database,
Ontology

*Correspondence:
Sebastian Duesing
sduesing@lji.org
Bjoern Peters
bpeters@lji.org
Full list of author information is available at the end of the article

Background
A lot of data within and outside the biomedical field is
unstructured, a category that includes data in the form of
text, images, audio, and video, with estimates ranging as
high as 95% [1]. Unstructured data is commonly under-
utilized due to the difficulty of automatically extract-
ing meaningful information from these forms of data.
We work on the Immune Epitope Database (IEDB) [2],

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-025-00324-7&domain=pdf

Page 2 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

a publicly available database of immune epitopes that
prominently features epitopes recognized in the context
of infectious and immune-mediated diseases. The IEDB
links its data to ontology terms so its data is interoperable
with other ontologized databases and connected to the
large network of ontology metadata [3]. In our work on
the IEDB, we have found that unstructured data also lags
behind structured data in adherence to FAIR data stand-
ards, and we identified data from certain free-text fields
as a target for improvement [3]. Creating more linkages
between free-text data in the IEDB and structured vocab-
ularies like ontologies is one way to improve the FAIRness
of that data [3]. Normalizing free-text data, i.e., removing
variance that does not affect meaning from text, can be
used to align data to structured vocabularies. The IEDB
therefore aims to use text normalization to enable link-
ages between that data and ontology terms. This paper
presents a novel repository of Python scripts for free-text
data normalization and an evaluation of the application of
these scripts to two different sets of biomedical data from
the IEDB, an age dataset and a data-location dataset.

Variance, a term that this paper uses to refer to dif-
ferences in representations of information that do not
change meaning, is a key problem of free-text nor-
malization. Free-text data can contain several different
kinds of variance. Character variance (such as differ-
ences in diacritic usage, whitespace, or encoding) dif-
ferentiates data items like “6–8 weeks” and “6–8 weeks”.
Word-level variance, which includes misspellings,
abbreviations, synonyms, and colloquialisms, differ-
entiates data items like “6–8 weeks” and “6–8 wks”.
Phrase-level variance includes the ways that one idea
can be expressed with different permutations of words,
and it differentiates data items like “6–8 weeks” and “6
to 8 weeks”. The data items “6–8 weeks”, “6–8 weeks”,
“6–8 wks”, and “6 to 8 weeks” all mean the same thing,
but in their unstandardized free-text forms, they are all
parsed as distinct. The aim of free-text normalization
is to ensure that data items that mean the same thing
look the same way. The extent to which each of those
three types of variance might exist in a particular data-
set is highly dependent on the nature of the data. Text
normalization has been applied to a variety of domains,
including use on text from social media [4]. Domain-
independent normalization strategies must be able to
parse diverse forms of textual variance, as data from
different domains presents unique challenges, e.g., the
variance in a biomedical dataset is likely to be differ-
ent than that of a dataset of text from social media.
Normalization of text from social media, for instance,
faces distinctive challenges resulting from use of short-
form abbreviations (e.g., “nite” for “night” or “gr8”
for “great”), intentional misspellings for effect (e.g.,

“soooooo great”), and emoticons (e.g., “ < 3”), which
have hindered the performance of automated tasks
like machine translation on text from social media [4].
These text features are unlikely to be found in biomedi-
cal datasets, which contain their own distinctive forms
of variance, including uncommon technical terminol-
ogy, symbols, and abbreviations, like occurrences of the
character μ, which is otherwise uncommon in English
text, in the unit “μg” (“micrograms), and the use of “ug”
and “mcg” as alternatives. To be broadly applicable to
free-text datasets of all sorts, a free-text normalization
tool must be able to address all three types of variance
in a way that is flexible enough to account for different
datasets’ unique normalization needs.

There is a robust history of development of automated
tools for addressing some types of variance, such as spell-
check technologies, but there are comparatively few holis-
tic tools designed to normalize dataset variance at the
character, word, and phrase levels, though the prolifera-
tion of LLMs has led to the use of a variety of LLM-based
tools for text normalization. However, there remains a
use-case for non-LLM-based tools for datasets with fea-
tures such as uncommon data elements, which tend to
decrease the performance of LLM-based-tools (see the
Evaluating the Utility of ADP and Other Tools subsection
in the Discussion section below). To that end, we created
the non-LLM-based free-text normalization tool ADP,
which stands for Adaptable, user-Dependent, and Precise.
In this paper, we examine the application of ADP to data
from two free-text fields from the IEDB: the “age” field,
which contains subject ages, and the “data location” field,
which contains information about data provenance, both
of which were accessed using SQL queries.

The age dataset records the ages of subjects in inves-
tigations archived in the IEDB. It contains 7,151 total
unique organism-age pairs (e.g., age: “6–8 weeks old”,
organism name: “Mus musculus C57BL/6”), meaning
some age values are duplicated in that dataset because
they occur with multiple organisms; there are 4,095
unique age value strings. Strings in the age dataset typi-
cally contained one piece of information per string, and
where list-like strings were present, they were legiti-
mate lists ostensibly linked to studies that investigated
subjects at multiple specific ages, e.g., the data item
“21, 27 and 36 weeks”.

The data-location dataset the provenance of data
from an IEDB-curated manuscript. It contains 251,810
unique data-location strings, such as “Cited reference
[PMID: 16472860]”. In contrast with the age dataset,
many strings in this dataset contained several individu-
ally valid data locations in a single line, such as “Data
set S1 and S11 and Figs. 1, 2, 3, and 4”. See Table 1
below for further examples from each dataset.

Page 3 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

The data in both of these datasets were input into the
free-text “age” and “data location” fields by the human
curators who enter publication data into the IEDB.
Since the start of the IEDB’s data collection process in
2004, these fields have been collected as free-text data
because the diversity of values and formats present
among the data made it impossible to develop a single
standardized input format that would work for all data
items from all publications. For the age field, subject
ages reported in publications frequently including com-
plex information in several formats (e.g., multiple age
ranges, statistical information like means and medians,
life stages, etc.), and for the data-location field, it may
be necessary to include publication-specific section
titles or individual publication names, etc., that are not
found in an existing structured vocabulary. Even after
standardization, the values and formats of these fields
remain diverse. As both fields are input as free-text, we
regard the individual data items that result from this
process as unstructured data because they are not in a
singular standardized format.

Methods
ADP is a non-fully-automated normalization tool that
enables a user to create standardization rules and apply
them to datasets, which is available on GitHub [5]. The
ADP normalization scripts are written in Python version
3.10. The core normalization scripts import the libraries
os, re, and sys from the Python Standard Library and the
non-native library editdistance (imported as ed). ADP is
open-source software licensed under GNU GPL-3.0.

ADP’s three core normalization scripts (char_normal-
izer.py, word_normalizer.py, and phrase_normalizer.
py) address the three types of variance outlined in the
introduction: character-, word-, and phrase-level vari-
ance. At the character and word stages, ADP also logs a
Levenshtein distance score for each data item to indicate
the extent of the changes made in that stage. ADP uses a
script (calculate_metrics.py) to pull relevant metrics from

the normalized output files and generate figures using the
Python libraries ast, math, matplotlib.pyplot (imported
as plt), pandas (imported as pd), seaborn (imported as
sns), and warnings.

ADP text normalization workflow
Action decision‑based normalization of characters and words
While standardizing character variance can be as simple
as selecting acceptable special characters and determin-
ing case-sensitivity of the data, standardizing word-level
variance involves identifying and correcting misspell-
ings in free-text data, a process which is well-known to
be “cumbersome” [4]. Normalization tools must also be
able to handle “non-standard words,” including numbers,
acronyms, and other abbreviations [6]. Some existing
word normalization tools overcorrect and have higher
rates of “unresolved errors,” or incorrectly-spelled words
that the tool swaps with a context-incorrect word; others
tend to undercorrect, e.g., by failing to recognize “cant”
as a misspelling of “can’t” [4]. ADP uses an iterative char-
acter and word normalization process designed to prior-
itize accuracy of outputs.

The character and word normalization scripts share a
similar rule-building workflow. When one of these two
scripts is run on a dataset for the first time, it identifies
distinct text units (characters or words, which for ADP’s
purposes is a sequence of characters delineated by one
of several common separators, like hyphens, spaces, or
punctuation, or the start or end of a string) and creates a
review file to be used for normalization rule-setting.

The review file is a TSV containing one row for each
distinct character—except lowercase letters, digits, and
a small number of basic punctuation characters, which
are treated as valid for character normalization—or word
found in the file. It has columns for the character or
word, its context (i.e., the data item strings in which that
character or word was found), and a count of its occur-
rences. The review file also has four action columns with
the headings “replace_with”, “remove”, “invalidate”, and
“allow”. Entering text in one of the action columns (which
we refer to as “making an action decision”) sets a rule for
the behavior of the script concerning the character or
word in that row during future runs of the script. Table 2
describes how entering text in one of the action columns
modifies the behavior of the script.

Every time the script is rerun, it moves any review file
rows in which an action decision has been made to a ref-
erence file, which serves as a bank of rules for the behav-
ior of the script.

Tables 3 and 4 contain examples of the rules applied
to these datasets at the character and word stages. These
tables are intended to summarize the implementations
of the example rules and are abridged from the reference

Table 1 Example age & data-location data items

a The data-location dataset contained a large number of Protein Data Bank (PDB)
identifiers that parsed as distinct words. These IDs, which follow a standard
four-character alphanumeric format, were selected using a regular expression
and then mass-allowed. There are 186 non-PDB-ID words in the data-location
reference file

Age Dataset Data-Location Dataset

6 to 8 weeks Figures 2, 3, 4, 5, 6, S4, S5, S7,
Tables 2, 3, 4 and 5

Adults (pregnant) PDB: 5EC1, 5EC2, 5EBW, 5EBL, 5EBM

Mean age of 32.2 years
with a range from 18 to 49 years

Richardson et al. Virol 1986;155:508–
523 [PMID: 3788062]

18–22 months or 4–6 months pg. 1410 and J. Virol. 61:1358–1367

Page 4 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

files. The context column, which contains a sample (up to
300 characters in length) of data items containing a given
character or word, has been omitted here to improve the
readability of this table in the manuscript, and the indi-
vidual action decision columns are condensed into the
singular “Rule” column in the tables below. Please refer
to the reference files in the ADP repository to see the full
versions of the tables and all rules applied at the charac-
ter and word stages [5].1

Following the transfer of rows with new action deci-
sions from the review file to the reference file, the script
runs its normalization functions, applying the rules based
on the user’s action decisions to the dataset, and it checks

for any new text units that do not have a line in either the
review file or the reference. See Fig. 1 for a visual repre-
sentation of how this process works during the character
normalization stage.

In the character normalization stage, data items pass
validation if in the second reference check (as shown in
the diagram), only allowed characters are found in the
string; otherwise, validation fails. Only data items that
pass character-level validation are normalized in the
word normalization stage. Data items pass word-level
validation if in the second reference check, only allowed
words are found in the string; otherwise, validation fails.

Pattern‑based normalization of phrases
ADP phrase normalization uses a process of matching phrase
structures to user-defined patterns. This process begins in the
word normalization stage. In the word review and reference
TSV, there is an additional “category” column. Adding text to
this column in the row of a particular word asserts the cat-
egory to which that word belongs, e.g., in rows for the words
“week”, “month”, and “year”, the category has been set to “unit”
in the word reference TSV for the age dataset.

When the phrase normalization script is called, it
divides the data item into individual words as was done
for the word normalization phase. The script tracks the
word’s place in the string and any delimiters (including
punctuation, whitespace, and the start or end of a string)
on either side of the word. Then, it searches the word

Table 2 Action decisions

Action Column Function

replace_with This character or word is replaced
with the text that is entered in this
column

remove This character or word is removed
from the data items in which it
occurs

invalidate This character or word remains as-is,
and data items containing this char-
acter or word will fail validation

allow This character or word remains
as-is, and this character or word
is considered an accepted text unit
for validation

Table 3 Sample character normalization rules & applications to data items

Dataset Char Occurrences Example string Rule Post-normalization string

age = 65 “mean age = 30 years” Allow “mean age = 30 years”

age – 31 “20–67 years” Replace with:
-

“20–67 years”

data-loc & 53 “Abstract & p. 664” Replace with:
and

“abstract and p. 664”

data-loc € 10 “Fig. 1 and Fig. 1â€”figure supple-
ment 1 and PDB 6HD8”

Invalidate Invalid, not normalized

Table 4 Sample word normalization rules & applications to data items

Dataset Word Occurrences Example string Rule Post-normalization string

age old 710 “6–10 week old” Remove “6–10 week”

age wk 57 “8–10 wk” Replace with:
week

“8–10 week”

data-loc fig 285 “Figs. 1 and 2” Replace with:
figure

“Fig. 1 and 2”

data-loc file 148 “additional file 1” Allow “additional file 1”

1 The reference files can be found at the following paths in the repository:
age/output_files/char_reference.tsv.
age/output_files/word_reference.tsv.
data_loc/output_files/char_reference.tsv.
data_loc/output_files/word_reference.tsv.

Page 5 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

Fig. 1 Flowchart of ADP character and word normalization processes

Page 6 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

reference file to see if a category has been assigned to the
word; if not, it categorizes the word as “unknown”. The
script produces a string that uses a simple grammar to
indicate the categories of each word and their position in
the string, e.g., the age datum “6 week mean” is parsed as
“[number(0)][unit(1)][statistical(2)]”. The phrase categori-
zation string is stored in a dedicated column in the phrase
normalization output file to enable the user to determine
which phrase structures occur the most frequently in a
dataset and develop normalization rules accordingly.

Like the character and word normalization phases, the
phrase normalization phase depends on the user to create
rules for distinct phrase structures. A dataset’s phrase-type
ruleset (found in age_phrase_types.tsv and data_loc_phrase_
types.tsv) establishes a name for a pattern, indicates whether
or not it is a valid pattern (e.g., in the age dataset, a data item
consisting of a number and a unit is valid, but a number by
itself is not, as being unitless makes its meaning uncertain),
and sets a rule for how phrases that match that pattern
should be formatted. See Table 5 for examples.

The categorization string, e.g., [number(0)][unit(1)][sta-
tistical(2)] (extracted from “6 week mean”), is matched to
a pattern—in this case, the pattern called “statistical”—
which matches to the structures of data items that provide
a mean or median age value. In the “standard_form” col-
umn in the phrase-type ruleset, the user can specify how
data items matching a pattern should be formatted. In the
case of “6 week mean”, the standard form is represented
as “[2]: [0] [1]”, in which the numbers in brackets refer to
the indices from the categorization string, and how they
should be arranged within the standard form string.

The phrase normalization script generates a blank
phrase-type ruleset file if none exists, but if one exists,
it checks each data item’s categorization string against
any patterns in the file and applies the pattern in the
“standard_form” column if applicable by inserting words
where their indices are placed in the standard form
string. Through this process, “6 week mean” is rearranged

to match the standard form string “[2]: [0] [1]”, so the
output for that data item is “mean: 6 week”. This work-
flow ensures that data items with diverse structures,
like “6 week mean” and “mean = 6 week”, take on a sin-
gle standard phrase structure, like “mean: 6 week”. The
specific structure we chose for data items of this type is
arbitrary; the crucial part is the ability to quickly modify
diversely expressed data items into one standard style.

Table 5 contains sample rows from both datasets’
phrase type tables as examples of the rules applied to
these datasets. To see the full phrase type tables and all
normalization rules applied at the phrase stage, please
refer to the relevant files in the ADP repository [5].2

Patterns designated as invalid, like the “unitless range”
pattern in the age dataset or the “number” pattern from
the age dataset, are used to catch and invalidate unusable
data: unitless ranges, for instance, are invalidated at the
phrase stage because the variety of units used in other age
data items renders the meaning a data item like “8–10”
ambiguous. Lone numbers in the data-location dataset
suffer from the same problem, as “3” could refer to a page
number, a line number, a section, etc. For a more thorough
explanation of why invalidating these data items is a desir-
able outcome of the normalization process, please see the
Validity Rate by Dataset and Stage section below. If a data
item matches to an invalid pattern, it fails validation at the
phrase stage and is not normalized. Data items that match
to valid patterns, like “range” or “pdb id”, have their com-
ponent words rearranged to match the format specified in
the standard form column to bring them into alignment.

Only data items passing validation at the character and
word stages are normalized at the phrase stage. At the
phrase stage, data items pass validation only if they match
to a pattern designated as valid. The phrase normaliza-
tion and validation processes are visualized in Fig. 2.

Table 5 Sample phrase normalization rules

Dataset Pattern name Pattern Valid? Standard form Example matched phrases Example normalized phrases

age range [number(0)] [range_indica-
tor(1)] [number(2)] [unit(3)]

Y [0]-[2] [3] “6 to 8-week”,
“ 44.9 to 74.1 year”,
“36 to 68.2 year”

“6–8 week”,
“44.9–74.1 year”,
“36–68.2 year”

age statistical [statistical(0)] [number(1)]
[unit(2)]

Y [0]: [1] [2] “mean 29.8 year”,
“mean: 30 year”,
“median: 7.5 year”

“mean: 29.8 year”,
“mean: 30 year”,
“median: 7.5 year”

age unitless range [number(0)] [range_indica-
tor(1)] [number(2)]

N “8–10”, “31–80”, “12–20” N/A

data-loc pdb id [pdb(0)][pdb_id(1)] Y [0] [1] “pdb 1mfd”, “pdb 1rzj”, “pdb 1rzk” “pdb 1mfd”, “pdb 1rzj”, “pdb 1rzk”

data-loc loc number [location(0)] [number(1)] Y [0] [1] “page 11,782”, “information 9”,
“data 1”

“page 11,782”, “information 9”,
“data 1”

data-loc number [number(0)] N “3”, “1”, “151” N/A

2 The phrase type files can be found at the following paths in the repository:
age/input_files/age_phrase_types.tsv.
data_loc/input_files/data_loc_phrase_types.tsv.

Page 7 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

Fig. 2 Flowchart of ADP phrase normalization processes

Page 8 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

Measuring string change during normalization
The ADP normalization code imports the package edit-
distance to measure the Levenshtein distance between the
inputs and outputs in the character and word normaliza-
tion stages. The normalized output files contain dedicated
columns for distance scores comparing the character-nor-
malized string against the original and the word-normalized
string against the character-normalized string. Leven-
shtein distance ceases to be a sensible measure of continu-
ity between input and output at the phrase normalization
stage, as desirable and innocuous changes in word order can
produce high Levenshtein distance scores. For instance, the
hypothetical age data items “18 years average” and “average
18 years” have a Levenshtein distance of 14 despite being
semantically identical. While identifying string meaning is
not within ADP’s scope, it may prove useful in the future to
implement existing Python tools to calculate semantic or
cosine similarity as a metric of change at the phrase stage.

Modular normalization & accessory stages
The ADP normalization process is designed to be modu-
lar; because it is split into discrete processes for charac-
ter, word, and phrase normalization, it is possible to plug
in accessory stages to address dataset-specific normali-
zation needs that are not easily handled within the pre-
defined stages. The data-location dataset, for instance,
implements an accessory stage to split list-like data items
into individual strings for data location.

Data‑location splitting
Because the data-location dataset contained list-like
data items in which several distinct data locations were
included in a single data item (e.g., the real data item
“Fig. 2A,B,C, Fig. 6.”), phrase normalization would be
much more difficult without splitting list-like inputs
into multiple items that could then be normalized
independently. The script functions as a pre-phrase-
normalization stage for the data-location dataset; that
script creates multiple rows from list-like data items,
transforming the single data item “Fig. 2A,B,C, Fig. 6.”
into a set of segments including “Fig. 2a”, “Fig. 2b”,
“Fig. 2c”, and “Fig. 6”. Each segment is separated into

a distinct row, which is assigned a post-splitting index
and an original index to be able to both track segments
individually and trace them back to the list-like data
items from which they were originally split.

When phrase normalization is applied to the data-
location dataset, because the segments have been split
into their own rows, they are treated as distinct phrases,
allowing all of the “figure x” example segments above to
match to a single pattern, rather than needing dedicated
patterns to match to each list-like permutation.

Sample normalized data items
Table 6 contains sample data items from the age and data-
location datasets. The columns represent the progression
of these data items through the normalization process,
with changes made by the character, word, and phrase
normalization parts of the code represented in those
respective columns. Note that for the data-location data-
set, the list-like phrase-normalized strings are split into
individual TSV rows for each data item in the list, e.g., the
single input data item “Fig. 2A,B,C, Fig. 6.” becomes four
output data items: “Fig. 2a”, “Fig. 2b”, “Fig. 2c”, and “Fig. 6”.

Results
Using ADP’s normalization scripts on the IEDB age and
data-location datasets demonstrates that it is possible to
use ADP to effect significant improvements to the overall
standardization of a dataset.

User action efficiency
ADP is a tool for the development and implementation
of standardization rules. Accordingly, the thoroughness
with which a user makes action decisions (in the charac-
ter and word stages) and builds phrase type patterns (in
the phrase stage) determines the overall success of ADP at
standardizing a dataset. The data presented in this manu-
script is the result of a non-exhaustive approach to both
datasets in which rule-setting for particularly common
characters, words, and phrases was prioritized, to repre-
sent a practical and realistic normalization outcome.

Table 7 provides an overview of the extent of the nor-
malization rule-setting done for each dataset. The “items

Table 6 Sample data items at each stage

Dataset Before Normalization Character Normalized Word Normalized Phrase Normalized

Age Six week old six week old 6 week 6 week

Age 6–8 week 6 to 8-week old 6 to 8-week 6–8 week

Age Median age 6.3 years median age 6.3 years median 6.3 year median: 6.3 year

Data-Location Additional File 4, Tables 1 and 2 additional file 4, Tables 1 and 2 additional file 4, Tables 1 and 2 [’additional file 4’, ’Table 1’, ’Table 2’]

Data-Location Figures 2A,B,C, Fig. 6 Figures 2a,b,c, Fig. 6 Figures 2a,b,c, Fig. 6 [’Fig. 2a’, ’Fig. 2b’, ’Fig. 2c’, ’Fig. 6’]

Data-Location Figure 2A,B, Suppl Fig. 2 Figure 2a,b, suppl Fig. 2 Figure 2a,b, supplemental Fig. 2 [’Fig. 2a’, ’Fig. 2b’, ’supplemental
Fig. 2’]

Page 9 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

in review” counts reflect the number of characters or
words for which action decisions were not made at the
time of manuscript submission. The “items in reference”
counts reflect the number of characters or words for
which action decisions were made. The “phrase-type pat-
terns” counts reflect the number of user-generated pat-
terns against which phrases are matched to determine
their validity, and “valid phrase-type patterns” reflect
how many of the defined patterns are specified as valid
phrases.

The results presented in this manuscript are accord-
ingly the results of a non-exhaustive rule-setting effort
intended to prioritize the creation of rules targeting high-
occurrence characters, words, and phrase patterns. More
comprehensive normalization and higher validity rates
at each stage could be achieved by targeting increas-
ingly lower-frequency characters, words, and phrases.
Ultimately, reasonable stopping points will vary for each
dataset; making action decisions and creating phrase
patterns for increasingly infrequent characters, words,
and phrases offers diminishing returns in overall dataset
standardization.

The specific amount of time and effort that goes into
creating the normalization rules varies substantially
based on their complexity and the experience of the per-
son creating them. In our hands, we have found that one
cycle of rule implementation and testing takes 5–20 min,
with 5 being typical. Some rules make sense to implement
as a group, e.g., uppercase-to-lowercase conversions at
the character stage or plural-to-singular conversions at
the word stage. For these, we typically make the desired
changes in all relevant lines in the review file, rerun the
script, and then inspect the results in the output file. We
find that adding several rules in one cycle of implementa-
tion and testing does not substantially increase the time
taken by that cycle. A high estimate of the time it takes to
normalize these datasets can be calculated by multiplying
the number of rules by the typical time of 5 min per rule,
which translates to approximately 11 h for the age data-
set (with 131 rules) and approximately 20 h for the data-
location dataset (with 237 rules). However, in practice,

the time it took us is significantly lower than this because
of the efficiency added by implementing multiple similar
rules together at one time.

Validity rates by dataset and stage
ADP validates data items at each stage. In the character
stage, data items pass validation if they contain only char-
acters that have been marked as allowed. Data items pass
validation at the word stage if they contain only words
that have been marked as allowed. In the phrase stage,
data items pass validation if they match to a pattern des-
ignated as valid. The word and phrase stages only attempt
to normalize data items that have passed validation in
the previous stage(s). Figure 3 shows the rates of validity
achieved with the non-exhaustive rule-setting approach.

In the character stage, validity rates for both datasets
are above 99%. These character validation results were
achieved following 21 action decisions for the age dataset
and 39 action decisions for the data-location dataset in
the character normalization stage (see Table 7).

In the word stage, validity rates for both data sets are
above 98%. These word validation results were achieved
following 94 action decisions for the age dataset and
187 action decisions3 for the data-location dataset in the
character normalization stage (see Table 7).

The age dataset’s validity rate at the phrase stage is sig-
nificantly lower than that of the data-location dataset:
83.8% of data items pass phrase validation in the age data-
set, while 97.9% of data items pass phrase validation in
the data-location dataset. This is the result of a relatively
large number of data items that match invalid patterns.
As is recorded in the phrase-normalized age dataset
file, of the 1019 data items that failed phrase validation,
only 105 (1.47% of all data items) failed because they did
not match any pattern; all the rest failed because they
matched a pattern designated as invalid, a way to inten-
tionally eliminate non-useful data items, like numerical
values without units in the age dataset.

Table 7 Number of action decisions by dataset

Age Dataset Data-Location Dataset

Characters in review 1 7

Words in review 84 1160

Characters in reference 21 39

Words in reference 94 5780 counting mass-allowed Protein
Data Bank (PDB) identifiers, otherwise
 186a

Phrase-type patterns 16 12

Valid phrase-type patterns 9 11

3 186 row-by-row action decisions plus one mass-allow of Protein Data
Bank (PDB) identifiers, as described in footnote 1, performed via regular
expression selection of the rows containing PDB identifiers.

Page 10 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

Numerical exact ages without units (e.g., “7”) and age
ranges without units (e.g., “8–10”) are designated as inva-
lid phrase types because the age dataset contains ages
expressed in hours, days, weeks, months, and years, so
the units of these data items are unclear, which makes
the meaning of the data item ambiguous. From a prac-
tical perspective, queries on the age dataset must take
units into account. If a study with its subject age listed as
“8–10” appeared in the results of a query for studies with
a subject age of 8–10 years, it would be troublesome if
the “8–10” study was actually performed on mice with an
age of 8–10 weeks old. Numerical ages without units are
thus not useful for querying. Accordingly, we intention-
ally invalidate numerical data items without units, like
“8–10”, so the fact that a significant number of data items
failed phrase validation because they matched an invalid
pattern is not a poor outcome of normalization, as it rep-
resents the elimination of non-useful data.

These phrase validation results were achieved by
matching against 16 phrase-type patterns for the age
dataset and 12 patterns for the data-location dataset (see
Table 7).

It is evident that a relatively low number of user action
decisions is sufficient to produce very high rates of valid-
ity in at least these two free-text datasets. Notably, in
both the character and word stages, reaching similar
results (> 99% validity in the character stage and > 98%
validity in the word stage) in the two datasets required
only about twice as many action decisions in the data-
location dataset as in the age dataset, despite that the for-
mer dataset is more than 35 times longer than the latter.

Accuracy of normalized outputs
While robust accuracy-checking procedures are still in
development, a preliminary manual review of a rand-
omized subset of data items from each dataset has been
conducted in accordance with peer review feedback.
These preliminary accuracy tests were performed using
200-line tables in which each line contains an input data
item and the normalized output of that data item. The
reviewer was instructed to mark all lines where the input
did not mean the same thing as the output. In each test,
a small, randomized number of intentional procedurally
generated errors were included. Table 8 shows the results

Fig. 3 Validation results by dataset and stage

Page 11 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

of this preliminary manual review; “unaltered lines” refer
to the number of data items in the sample minus the
number of lines with intentional errors, and identified
error rate is calculated as the percentage of data items
with genuine errors among the unaltered lines.

The manual review of the data-location dataset
revealed error-introducing issues with the code that
splits data-location strings like “Fig. 1, 2, and 4” into its
component parts (e.g., “Fig. 1”, “Fig. 2”, “Fig. 4”) to be
parsed as strings individually. The second manual review
of the data-location dataset was performed following
fixes to issues discovered through the first manual review,
and this second round revealed other issues; as of the
time of writing, fixes for these issues are in progress and
are a high priority. Importantly, every issue found in the
data-location dataset in both reviews was a product of
errors in the splitter code, an accessory module which is
not part of the core normalization toolset; the reviewer
found no errors that could be attributed to the core nor-
malization functions.

This preliminary review is small and non-comprehen-
sive. Further evaluation of the accuracy of ADP nor-
malization using more extensive manual review and
other methods is an imminent next step. As part of this
process, we also intend to test accuracy comparatively
between ADP and similar tools.

Extent of change to data items
In the character and word stages, the values in the Lev-
enshtein distance score columns (see Measuring String
Change During Normalization above) serve as indica-
tors of the extent to which strings are modified during
the normalization process. Figures 4 and 5 show the fre-
quency distributions of Levenshtein distance scores by
dataset and stage. Note that the word stage figures for
both datasets use a logarithmic scale for clarity.

For the age dataset, Levenshtein distance score fre-
quency graphs show that most data items receive little
modification during the character and word stages. The
notable spike at a score of 1 in the word stage results from
the abundance of age data items with plural units that
were normalized to singular; the score of 1 frequently
represents the removal of an “s” from “years”, “months”,
or “weeks.”

In the data-location dataset, the uniform nature of
much of the dataset (namely the > 200,000 lines of HLA
Ligand Atlas URLs) produces other spikes in the char-
acter stage Levenshtein distance frequency chart. The
spike at 9 is one such case. Of the 57,517 data-location
data items with a Levenshtein distance score of 9 at the
character stage, 91% (52,522) are HLA Ligand Atlas URLs
that have paths that a string of 9 uppercase letters (e.g.,
“https:// hla- ligand- atlas. org/ pepti de/ AAAAA QSVY”).
The URLs resolve in the same way with lowercase and
uppercase letters in that path; the former URL is func-
tionally equivalent to “https:// hla- ligand- atlas. org/ pepti
de/ aaaaa qsvy”, so normalizing to lowercase does not
result in any lost meaning. Levenshtein distance scores
at the word stage cluster strongly around 0 for the data-
location dataset, a reflection of the fact that a large por-
tion of the dataset, namely the URLs, received no word
normalization.

Levenshtein distance ceases to be a useful metric at
the phrase stage, at which it is often desirable to make
significant changes to the overall structure of the data
item. Straightforward and benign changes like altera-
tions in word order produce high Levenshtein dis-
tances. Accordingly, Levenshtein distance scores are
not tracked at the phrase stage.

Data-location phrase splitting and phrase-part
validity.

Because the data-location dataset included a high num-
ber of list-like inputs made up of several individual data
locations, the data items in that dataset were put through
a splitter script that divided list-like data items so that
each output datum referenced exactly one data location
(see Data-Location Splitting above).

For this dataset, we calculate additional relevant met-
rics. Split phrase count (listed in the split_phrase_count
column) refers to the total number of outputs split out of
an original input data item; e.g., the input item “Table 8
and Fig. 1”, which is split into the data items “Table 8”
and “Fig. 1”, has a split phrase count of 2. Validity rate is
the number of valid output data items divided by the split
phrase count. A validity rate of 1 means that every output
data item that derives from a particular input data item is
valid, while a validity rate of 0 means that none of those
output data items are valid. Split phrase count and validity

Table 8 Preliminary manual review results

Test Intentional Errors Unaltered Lines Intentional Errors
Identified

Genuine Errors
Identified

Identified
Error Rate

Age 9 191 7 0 0%

Data-Location 1 7 193 7 9 3.63%

Data-Location 2 3 197 2 5 2.54%

https://hla-ligand-atlas.org/peptide/AAAAAQSVY
https://hla-ligand-atlas.org/peptide/aaaaaqsvy
https://hla-ligand-atlas.org/peptide/aaaaaqsvy

Page 12 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

Fig. 4 Levenshtein distance scores by stage, age dataset

Page 13 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

Fig. 5 Levenshtein distance scores by stage, data-location dataset

Page 14 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

rate (along with all other analytics, like Levenshtein dis-
tance scores) are recorded in the phrase-normalized output
file exactly once for each input data item so that means and
frequency distributions of those metrics are not skewed by
the row-count increase that occurs during phrase splitting.

As is evident in Fig. 6, the large number of HLA Ligand
Atlas URLs in the dataset concentrate both the split
phrase count and validity score around 1, as the URLs
are all unsplit and valid. Including URLs, the mean split
phrase count is 1.24 (standard deviation 0.92), and the
mean phrase validity rate is 1.00 (standard deviation 0.06).

It is noteworthy that the data items with high split
phrase counts tend towards high validity rates. It appears
that those data items tend to be simple and orderly
lists, such as the data item “Figs. 1, 2, 3, 4, Supplemen-
tary Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13”, which has a
split phrase count of 16 and a validity rate of 1.0. Such
data items are simpler to split, and their split outputs are
individually simpler and more readily matchable to basic
phrase patterns than the less uniform lists that occur
towards the middle of the split phrase count range, such
as “Table 3 and Figs. 1 and 2 and Supporting Information
S2 Figure” (split phrase count 4, validity rate 0.75).

When examining only non-URL data items, strong
clustering around a validity rate of 1 remains, but with

a more obvious spread of split phrase count values, as is
evident in Fig. 7. Excluding URLs, the mean split phrase
count is 3.19 (standard deviation 1.91), and the mean
phrase validity rate is 0.96 (standard deviation 0.17).

The implementation of data-location phrase split-
ting achieves very high rates of validity even among the
complicated minority made up of non-URL data items.

Discussion
Measuring normalization empirically
The ADP toolset provides several metrics by which a
user can measure the extent to which ADP normaliza-
tion modifies the data, including Levenshtein distance
scoring and validation pass/fail rates. These metrics are
intended to approximate the degree to which the ADP
normalization code improved the overall normality of
the data without losing the original string’s meaning.
However, empirically evaluating the success of the nor-
malization process as a whole remains difficult due to
the lack of a clear universal metric for dataset normaliza-
tion. A useful future direction would be to establish an
empirical way to measure degrees of standardization in
unstructured datasets; ideally, such a metric would allow
comparisons between free-text datasets’ spelling accuracy,
adherence to grammar, and stylistic consistency.

Fig. 6 Scatter plot of split phrase count and phrase validity rate

Page 15 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

Evaluating the utility of ADP and other tools
While the age and data-location datasets are distinct
enough in size, content, and style to make a case for the
flexibility of the ADP rule-setting framework for nor-
malization, its use on these two datasets is not sufficient
to demonstrate that ADP is a useful tool for a truly wide
range of free-text datasets. Further experimentation with
other free-text datasets will be necessary to ensure that
ADP normalization is adaptable enough to be used with a
diverse range of free-text datasets. Promising future can-
didates to test ADP’s generalizability are the IEDB’s other
free-text data fields, which would benefit from standardi-
zation for the same reasons as the age and data-location
fields. Of particular interest is the “dose” dataset, which
documents dosages of substances administered as part of
an experiment and which contains several thousand dis-
tinct lines of free-text data. Dose data items tend to be
long and diverse, such as “6 dose(s) of 0.1 mg in saline”
and “Four doses of epitope covalently linked to BSA in
CFA administered at intervals of 1 week”. It appears that
this dataset would benefit from several standardization
rules applied to the age and data-location datasets, like
the conversion of spelled-out numbers to numerals, e.g.,
converting “Four” to “4” in the second data item above.
The dose dataset’s complex phrase structures could pose

a challenge at the phrase normalization stage, though it
may benefit from splitting in a manner like the data-loca-
tion dataset.

Developing frameworks for testing the accuracy of
ADP’s outputs compared to other normalization meth-
ods is an active priority. ADP’s user-dependence is a
design feature that was implemented specifically because
we hypothesize that it will result in higher precision of
normalization results compared to predictive normali-
zation tools, which can struggle with certain context-
specific normalization decisions, like handling instances
of “cant” occurring as a synonym of “slang” rather than a
misspelling of “can’t”, that humans can make quickly and
accurately [4]. Future testing will likely include evaluating
how effectively ADP normalization preserves the mean-
ing of data items throughout the normalization process
compared to analogous normalization tools. Performing
further accuracy testing, both through more extensive
random-sample review as described in the Accuracy of
Normalized Outputs section above, as well as through
measures like semantic similarity, is a critical next step
for this process. Comparison between ADP and large lan-
guage model-based tools is of particular interest.

Many recent tools for free-text standardization
make use of large language models (LLMs) to perform

Fig. 7 Scatter plot of split phrase count and phrase validity rate, excluding URLs

Page 16 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

standardization tasks. One such tool is CleanAgent,
which uses an LLM agent to identify the types of data
(e.g., phone number, email address, date) in each column
of a CSV, write and run Python code to standardize each
column’s data based on its type, and interact with the user
throughout the standardization process [7]. At the time
of the writing of this manuscript, the authors were una-
ble to run CleanAgent on either the age or data-location
datasets; we have reached out to the developers of Clea-
nAgent about a recurring error message. We aim to do
a direct comparison between the free-text normalization
outcomes from CleanAgent and ADP in the future. Based
on its demonstration publication, CleanAgent appears to
be an efficient solution to the problem of standardizing
simple data items (e.g., dates or phone numbers), though
in that publication, CleanAgent did not identify a data-
type for the columns named “AGE” and “weight__” [7],
suggesting that it may be less well-suited for standardiz-
ing columns of data that lack an obvious standard form.
Its use-case is different from ADP’s, which requires more
of the user’s time and effort but is designed to handle
data items of that sort.

ChatGPT also been employed for conversions between
structured and unstructured data formats in experi-
ments on biomedical data, such as those described in
the 2024 analysis by Yoon et al., which evaluated multi-
ple types of transformations between structured data
(like ICD codes or tables of laboratory results) and
unstructured text [8]. Yoon et al.’s results indicate that
the GPT-3.5 model performs better on conversion tasks
involving more common data items: in a task involving
conversion of ICD-9-CM codes to and from natural lan-
guage, the model displayed a linear reduction in accu-
racy among less frequently-used codes, exemplified by
an accuracy of 73.3–91.8% for ICD-9-CM codes within
the top 1000 by frequency, which decreased to 54.8–91%
among ICD-9-CM codes outside of the top 3000 by fre-
quency [8]. Similarly, the model performed better in a
task that required identifying prescription drugs listed
in unstructured text from discharge summaries when it
could match drugs by active ingredient, e.g., matching
“paracetamol” with “acetaminophen”, rather than strictly
adhering to the original terminology [8]. These results
suggest that GPT-3.5-based tools are best suited for text
standardization on datasets featuring common data, like
the particularly frequent ICD-9-CM codes, and datasets
for which synonym substitution is acceptable.

The newer GPT-4 model has been shown to outper-
form GPT-3.5 across multiple domains, indicating that
it and other more advanced LLMs may be able to pro-
vide better results than GPT-3.5 [8]. Due to the ongo-
ing rapid advancement in the performance of newer
LLMs like GPT-4o and DeepSeek, we expect that these

contemporary LLMs would outperform older models like
GPT-3.5 on data standardization tasks, and future LLMs
will likely outperform today’s models. As output accuracy
is a vitally important feature of standardization processes
for biomedical datasets, an error rate of 0 is often neces-
sary. If LLM advancements do indeed result in higher out-
put accuracy, these advancements will further increase
the utility of LLMs for biomedical data standardization.
Nevertheless, there remains a use-case for standardization
tools designed for data with features that tend to decrease
LLM performance, like data that does not feature common
elements or for which synonym substitution is unaccepta-
ble. ADP is designed for this niche, as its non-fully-auto-
mated design enables complete and precise control over
its outputs regardless of the features of the data itself. The
amount of fine-tuning possible within ADP’s normaliza-
tion process is intended to enable high output accuracy.
Our preliminary accuracy testing, which resulted in an
identified error rate of 0–3.63%, as described in the Accu-
racy of Normalized Outputs section, suggests that ADP
can achieve higher accuracy than the LLM-based tech-
niques for conversion of natural language to structured
data that are described in [8], though more work is nec-
essary to fully assess this. The authors intend to conduct
further empirical evaluation of the accuracy of ADP and
comparable LLM-based normalization tools in the future.

Productive value of results
These datasets contain all distinct age and data-location
values recorded in the IEDB, but many of the individual
values in these datasets represent thousands of instances
of that value. As a result, the effect of normalizing these
datasets is multiplied. The IEDB records more than 18
million total age values and more than 21 million total
data-location values [5], so applying normalization to
these data values in the IEDB will accordingly produce
significant improvements to findability and usability of
millions of lines of data.

Improving data findability
Using the ADP normalization toolkit, we normalized
the age and data-location free-text datasets from the
IEDB, two datasets with very different content and nor-
malization needs, in such a way that renders the data in
these datasets searchable, findable, and ontologizable in
a way that they simply were not before. Standardizing
the text in these datasets will enable the forthcoming
implementation of dedicated search tools for these data-
sets in the IEDB. For instance, IEDB users could query
for data from experiments on mice less than 28 days
old and receive results within that range including ages
originally expressed with varying formats and units (e.g.,
‘10–20 days old’, ‘2 days’, ‘24 h’, ‘1–3 wks’). Similarly, by

Page 17 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

ontologizing categorical age data items like ‘juvenile’,
‘calf ’, ‘foal’, ‘piglet’, or ‘child’, we can enable searches for
pre-adult life stages across species.

The FAIR data principles identify searchability (princi-
ple F4) as a critical aspect of data findability, so improv-
ing the IEDB’s search functionalities is core to the IEDB’s
effort to improve its overall data FAIRness [9]. The data-
location dataset in particular was identified as a promis-
ing candidate for work to improve the IEDB’s FAIRness
in a 2018 analysis of the IEDB’s adherence to the FAIR
standards [3]. Accordingly, the normalization performed
on the data-location dataset using ADP completes
that long-standing goal and demonstrates the IEDB’s
ongoing commitment to improving data FAIRness in
immunology.

Enabling ontologization of free-text data
By standardizing the characters, words, and phrase
structures in free-text datasets, ADP makes it easier to
ontologize those datasets. Several prior publications
have illustrated the benefits of linkages between IEDB
data and formal ontologies [2, 3, 10, 11]. Already, many
IEDB data fields are mapped to terms from a wide range
of ontologies, such as the “Organism” field being mapped
to NCBI Taxonomy [12] terms and the “Evidence Code”
field being mapped to Evidence Ontology [13] terms [14].
By standardizing the terms in use in the age and data-
location datasets, ADP normalization is an effective step
towards ontologizing the data in these fields. In particu-
lar, promising next steps include the ontologization of
units in the age dataset via the Unit Ontology [15] and
document parts via the Information Artifact Ontology
and Ontology for Biomedical Investigations [16]. Should
ADP prove effective on other free-text datasets within
and beyond the IEDB, it will make it possible to reap the
benefits of ontologization from large amounts of previ-
ously underutilized biomedical data.

Conclusions
While further testing is necessary to validate ADP nor-
malization on other datasets, preliminary evaluations of
its application to the age and data-location datasets sug-
gest that ADP normalization can produce high rates of
output validity in diverse free-text datasets following a
relatively low number of user action decisions.

The Immune Epitope Database (IEDB) has made sig-
nificant efforts over the past several years to improve its
adherence to FAIR data standards through improvements
to findability and interoperability of its data. Creating
linkages with formal ontologies is a pillar of the IEDB’s
efforts to improve interoperability, but these efforts
have been concentrated on standardized datasets. The

ability to standardize free-text datasets would enable fur-
ther FAIRness and more effective utilization of the vast
quantities of free-text data in the IEDB. Our preliminary
results are promising indications that ADP normaliza-
tion can standardize free-text datasets efficiently and
accurately.

Acknowledgements
We wish to acknowledge the entire IEDB and CEDAR development and cura-
tion team.

Authors’ contribution
All authors contributed to the conception of this project. S.D. and J.B.
designed and developed the ADP software, collected resulting data, and
drafted this manuscript. B.P. and J.A.O. advised on the software design and
data collection process. R.V. advised on datasets to target for normalization,
assisted in collection of input data, and provided substantial feedback on the
software design. All authors read and approved the final manuscript.

Funding
Research reported in this publication was supported by the National Institutes
of Health contract 75N93019C00001 and grant U24CA248138.

Data availability
All code and data discussed in this manuscript is available in the following
GitHub repository: https:// github. com/ sebas tiand uesing/ adp.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla,
CA 92037, USA. 2 Knocean Inc., Toronto, ON M2P 2T3, Canada. 3 Department
of Medicine, University of California San Diego, La Jolla, CA 92093, USA.

Received: 30 October 2024 Accepted: 25 February 2025

References
 1. Gandomi A, Haider M. Beyond the hype: big data concepts, methods,

and analytics. Int J Inf Manag. 2015;35(2):137–44.
 2. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al.

The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res.
2019;47(Database issue):D339-43.

 3. Vita R, Overton JA, Mungall CJ, Sette A, Peters B. FAIR principles and
the IEDB: short-term improvements and a long-term vision of OBO-
foundry mediated machine-actionable interoperability. Database.
2018;1(2018):bax105.

 4. Clark E, Araki K. Text normalization in social media: progress, problems
and applications for a pre-processing system of casual english. Procedia -
Soc Behav Sci. 2011;1(27):2–11.

 5. Duesing S. sebastianduesing/adp. 2024. Available from: https:// github.
com/ sebas tiand uesing/ adp. Cited 2024 Jul 1.

 6. Sproat R, Black AW, Chen S, Kumar S, Ostendorf M, Richards CD. Normali-
zation of non-standard words. Comput Speech Lang. 2001;15(3):287–333.

 7. Qi D, Wang J. CleanAgent: Automating Data Standardization with LLM-
based Agents. arXiv; 2024. Available from: http:// arxiv. org/ abs/ 2403.
08291. Cited 2024 Sep 30.

https://github.com/sebastianduesing/adp
https://github.com/sebastianduesing/adp
https://github.com/sebastianduesing/adp
http://arxiv.org/abs/2403.08291
http://arxiv.org/abs/2403.08291

Page 18 of 18Duesing et al. Journal of Biomedical Semantics (2025) 16:5

 8. Yoon D, Han C, Kim DW, Kim S, Bae S, Ryu JA, et al. Redefining health care
data interoperability: empirical exploration of large language models in
information exchange. J Med Internet Res. 2024;26(1):e56614.

 9. GO FAIR. F4: (Meta)data are registered or indexed in a searchable
resource. Available from: https:// www. go- fair. org/ fair- princ iples/ f4- metad
ata- regis tered- index ed- searc hable- resou rce/. Cited 2024 Jun 7.

 10. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell
JR, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res.
2015;43(Database issue):D405–12.

 11. Vita R, Overton JA, Sette A, Peters B. Better living through ontologies
at the Immune Epitope Database. Database J Biol Databases Curation.
2017;18(2017):bax014.

 12. NCBI Resource Coordinators. Database Resources of the National Center
for Biotechnology Information. Nucleic Acids Res. 2017;45(Database
issue):D12–7. https:// acade mic. oup. com/ nar/ artic le/ 45/ D1/ D12/ 26057 05.

 13. Chibucos MC, Mungall CJ, Balakrishnan R, Christie KR, Huntley RP, White O,
et al. Standardized description of scientific evidence using the Evidence
Ontology (ECO). Database J Biol Databases Curation. 2014;2014:bau075.

 14. Vita R, Overton JA, Peters B. Identification of errors in the IEDB using
ontologies. Database J Biol Databases Curation. 2018;2018:bay005.

 15. Gkoutos GV, Schofield PN, Hoehndorf R. The Units Ontology: a tool for
integrating units of measurement in science. Database J Biol Databases
Curation. 2012;5(2012):bas033.

 16. Bandrowski A, Brinkman R, Brochhausen M, Brush MH, Bug B, Chibu-
cos MC, et al. The ontology for biomedical investigations. PLoS ONE.
2016;11(4):e0154556.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.go-fair.org/fair-principles/f4-metadata-registered-indexed-searchable-resource/
https://www.go-fair.org/fair-principles/f4-metadata-registered-indexed-searchable-resource/
https://academic.oup.com/nar/article/45/D1/D12/2605705

	Standardizing free-text data exemplified by two fields from the Immune Epitope Database
	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	ADP text normalization workflow
	Action decision-based normalization of characters and words
	Pattern-based normalization of phrases

	Measuring string change during normalization
	Modular normalization & accessory stages
	Data-location splitting

	Sample normalized data items

	Results
	User action efficiency
	Validity rates by dataset and stage
	Accuracy of normalized outputs
	Extent of change to data items

	Discussion
	Measuring normalization empirically
	Evaluating the utility of ADP and other tools
	Productive value of results
	Improving data findability
	Enabling ontologization of free-text data

	Conclusions
	Acknowledgements
	References

