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Abstract 

Background  Drug-drug interaction (DDI) information retrieval (IR) is an important natural language process (NLP) 
task from the PubMed literature. For the first time, active learning (AL) is studied in DDI IR analysis. DDI IR analysis from 
PubMed abstracts faces the challenges of relatively small positive DDI samples among overwhelmingly large negative 
samples. Random negative sampling and positive sampling are purposely designed to improve the efficiency of AL 
analysis. The consistency of random negative sampling and positive sampling is shown in the paper.

Results  PubMed abstracts are divided into two pools. Screened pool contains all abstracts that pass the DDI key-
words query in PubMed, while unscreened pool includes all the other abstracts. At a prespecified recall rate of 0.95, 
DDI IR analysis precision is evaluated and compared. In screened pool IR analysis using supporting vector machine 
(SVM), similarity sampling plus uncertainty sampling improves the precision over uncertainty sampling, from 0.89 to 
0.92 respectively. In the unscreened pool IR analysis, the integrated random negative sampling, positive sampling, 
and similarity sampling improve the precision over uncertainty sampling along, from 0.72 to 0.81 respectively. When 
we change the SVM to a deep learning method, all sampling schemes consistently improve DDI AL analysis in both 
screened pool and unscreened pool. Deep learning has significant improvement of precision over SVM, 0.96 vs. 0.92 
in screened pool, and 0.90 vs. 0.81 in the unscreened pool, respectively.

Conclusions  By integrating various sampling schemes and deep learning algorithms into AL, the DDI IR analysis from 
literature is significantly improved. The random negative sampling and positive sampling are highly effective methods 
in improving AL analysis where the positive and negative samples are extremely imbalanced.

Keywords  Active learning, Deep learning, Drug-drug interaction, Information retrieval, Random negative sampling, 
Positive sampling, Similarity sampling, Uncertainty sampling

Background
Drug-drug interaction (DDI) is one of the major risk fac-
tors that cause adverse drug events (ADEs). Nearly 22% 
and 9% of ED visits and hospitalizations, respectively, are 
caused by DDIs [1–4]. DDIs are most prevalent among 
older adults because of the disproportionately high prev-
alence of polypharmacy [5–7]. DDI is a major research 
topic in pharmacokinetics (PK) and pharmaco-epidemi-
ology (PE) studies. The DDI pharmacology mechanisms 
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usually are investigated in PK studies, in which the 
change of one drug’s metabolism and transportation are 
compared in the presence and absence of another drug 
[8]. PK DDI studies sometimes are performed in  vitro, 
i.e. using either recombinant enzymes, or human liver 
microsome, or hepatocyte. Clinical PK DDI study is 
another important approach in assessing whether one 
drug exposure is altered by another co-committed drugs 
[8, 9]. Using large scale claim or EHR databases, phar-
maco-epidemiological studies, on the other hand, focus 
on whether DDIs change ADE risks in targeted patient 
populations [10]. DDI induced ADEs, sometimes, are 
also published in patient case reports [11, 12]. If drug 
combinations are tested in controlled clinical trials, their 
efficacy and ADEs are always compared to those of single 
drugs [13]. An enormous amount of DDI information has 
been published in the biomedical literature. It has been 
a great interest in mining and curating these DDI infor-
mation for assisting physicians and patients in prevent-
ing DDIs and their associated ADEs [14]. In this paper, 
we will focus on mining published DDI studies related to 
ADEs. They are either pharmacoepidemiology studies, or 
case reports, or controlled clinical trials [15].

There are two major DDI text mining tasks from Pub-
Med: information retrieval (IR) [16] and information 
extraction (IE). The goal of DDI IR is to identify DDI rel-
evant publications or abstracts, while DDI IE is to extract 
DDI pairs from the DDI relevant publications or abstracts 
[17]. DDI IR is always the first step in identifying DDI rel-
evant publications and abstracts. Then, DDI IE task relies 
on annotated DDI relationships in positively labeled DDI 
paper or abstracts generated from the DDI IR step. DDI 
IR and IE analyses were reviewed in our early paper in 
2014 [18]. In this paper, our literature review will focus 
on DDI IE and IR methods after 2014.

Deep learning (DL) techniques are clearly the major 
trend in recent DDI IE analysis. Zhao et al. [19] proposed 
a syntax convolutional neural network that combined 
a traditional convolutional neural network and exter-
nal features (contexts, shortest path, part-of-speech) 
to extract DDIs. It obtained a F1-scores of 0.69 for DDI 
extraction. By integrating a recurrent neural network 
with multichannel word embedding, Zheng et  al. [20] 
combined an attention mechanism and a recurrent neu-
ral network with long short-term memory (LSTM) units 
and obtained a system that performed well for DDI 
extraction (F1 = 0.77). Zhang et  al. [21] integrated the 
shortest dependency paths and sentence sequence by a 
hierarchical recurrent neural networks-based method, 
which produced an F1-score of 0.73 for DDI extrac-
tion. Wang et al. [22] introduced the dependency-based 
technique to a bi-directional LSTM network, built a 
linear depth-first search and a breadth-first search, and 

it achieved an F1-score of 0.72 for DDI extraction. In a 
recent paper, Zhang et al. [23] shortest dependency path 
was integrated with both convolutional neuron network 
model and recurrent neuron network model in DDI IE 
analysis. It reported an F1-score of 0.75. Recently, utiliz-
ing drug information from drug database increased the 
DDI IE performance from the literature [24, 25].

However, the research on DDI IR analysis has not been 
as advanced as DDI IE methodology development. Our 
DDI IR analysis in 2015 presented the most comprehen-
sive comparisons among many machine learning (ML) 
methods. It demonstrated that linear discriminant analy-
sis, logistic regression, and supporting vector machine all 
had similar performance, F1-score = 0.93, in identifying 
DDI related abstracts in PubMed [26]. However, if the 
recall rate was set as 0.95, DDI IR precision became as 
low as 0.67.

The under-developed DDI IR methodology is largely 
due to the lack of negatively labeled DDI PubMed in the 
existing DDI corpora [27] which contain only positively 
label DDI abstracts, including our recently published 
corpus [28]. While building up more negatively and posi-
tively labeled DDI abstracts shall certainly help in further 
developing DDI IR methodology, it is more interesting 
to explore the interactive process between DDI annota-
tions and DDI IR optimization. This falls into one terri-
tory of artificial intelligent field, active learning (AL) [29]. 
AL attempts to maximize the performance of the ML 
algorithms while annotating as few samples as possible 
[30]. The application of AL to biomedical text mining is 
rather limited. As one example, its use to mine text in 
electronic medical record data to identify disease pheno-
type reduced the number of annotated samples required 
to achieve an AUC of 0.95 by 68% in predicting patients 
with rheumatoid arthritis.

Introduced by Lewis and Gale in 1994 [31], AL opti-
mizes ML algorithms sequentially based on user feed-
back. AL uses uncertainty sampling to guide ML training 
on new samples for which ML has demonstrated the low-
est predictive performance. The primary AL research has 
focused on uncertainty sampling schemes, such as least 
confidence, margin sampling, entropy, query by commit-
tee, expected model change, expected error reduction 
and variance reduction [32]. Although AL can potentially 
improve the DDI IR analysis, there are several challenges 
that motivate the development of new AL methodology 
in this paper. Firstly, positively labeled DDI abstracts in 
the current DDI corpora were selected from a query of 
keywords, such as “drug interaction,” limits the identifi-
cation of all relevant general abstracts in PubMed. If this 
is ignored in AL, it will lead to a biased DDI IR analy-
sis. Secondly, more than 99% of PubMed abstracts are 
unrelated to DDIs, and the labeling of positive samples is 
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more labor intensive, and therefore more expensive than 
labeling negative samples. Thus, to be more cost effective, 
AL should take greater advantage of the large-scale avail-
ability of negative data, but current uncertainty sampling 
schemes do not deal with them. DL approaches have 
been developed and implemented for the DDI IE analy-
sis, but not yet for DDI IE. DL could significantly improve 
the performance of AL with respect to DDI IR.

Methods
DDI corpus and annotation guideline
There are two sample pools in this study. The first one 
is called screened sample pool, which are the abstracts 
in PubMed through keyword queries: [“drug interac-
tion” AND (Type of Study)] and [“drug combination” 
AND (Type of Study)]. The “Type of Study” is defined 
in Table  1: clinical trial, pharmaco-epidemiology study, 
and case report. Based on the criteria for DDI abstract 
selection in Table  1, sample abstracts are reviewed and 
annotated. A corpus  is built, which has 933 positive DDI 
abstracts and 799 negative abstracts. They are the initial 
labeled samples in the screened sample pool. Table 1 pre-
sents inclusion and exclusion criteria for the screened 
sample pool abstract selection. 5,000 abstracts are ran-
domly selected from screened samples as the screened 
sample pool in this study.

The other sample pool is called unscreened sample 
pool. It is made up of 10,000 abstracts that are randomly 
selected from PubMed and are not overlapped with 

screened sample pool. This unscreened sample pool, on 
the other hand, contains data are largely not DDI rel-
evant. Data distribution for screened sample pool and 
unscreened sample pool is shown in Table 2.

Two annotators with complementary skills in biol-
ogy and informatics develops this corpus. Mrs. Shijun 
Zhang, has a master’s degree in biology, and has worked 
in Dr. Li’s lab for 7 years with the primary research 
responsibility of corpus development for drug-interac-
tion text mining [27]; Mrs. Weixin Xie, a PhD student 
in medical informatics, has conducted pharmacology 
and drug-interaction text-mining research under Dr. Li’s 
supervision. Training and education in labeling have an 
initial calibration step, in which two individuals label 
each abstract according to the inclusion and exclusion 
criteria outlined in Table 1 [28], the agreement between 
their labels is then evaluated for the first 30 positive 
abstracts (30 in each of the three DDI categories), and 
they receive further training based on that analysis.

Sampling strategies in active learning

•	 Uncertainty sampling in AL refers to selecting the 
least confidence new samples, e.g. abstracts with 
predicted probability around 0.5 in a binary classifi-
cation (i.e. DDI relevant or not), for the next round 
labeling and training in machine learning analysis.

•	 Positive sampling refers to selecting the most certain 
positive new samples, e.g. predicted probability close 

Table 1  Inclusion and exclusion criteria for clinical DDI abstract selection

Inclusion (positive) Clinical trial DDI study: Phase I/II/III clinical trials in which drug combination and/or single drug ADE are evaluated and reported.

Pharmaco-epidemiological DDI study: Pharmaco-epidemiology studies in which ADEs from drug combinations are reported 
and compared to single drug ADEs.

DDI and ADE case reports: DDI-induced ADE cases in which the time sequential drug and ADE are reported in clinical care set-
tings.

Exclusion (negative) Clinical PK DDI study: both single drug and drug combination exposures (i.e. pharmacokinetics) are evaluated either in patients 
or healthy volunteers.

Clinical PK PG study: the single drug exposure (i.e. pharmacokinetics) is evaluated among patients that have different genotypes 
in CYP450 and UGT enzymes and drug transporters.

in vitro PK study: substrate depletion and metabolite formation study is for the fm data collection; and inhibition study is for the 
Ki data collection.

Drug interaction detection algorithms or software

Compliance of avoiding DDI

Concordance of DDI reporting among different drug interaction knowledge base.

Comparison of the performance of DDI clinical decision systems

Drug-alcohol/food interactions

Drug/test interactions

Case report studies

Review papers

Cell culture and animal studies

Other studies that are not related to drug interactions.
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to 1 in a binary classification, for next round labeling 
and training in machine learning analysis. Positive 
sampling is absolutely necessary in the unscreened 
sample pool because most of samples are negative. 
In the screened sample pool, as most of samples are 
positive, positive sampling scheme is not needed.

•	 Random negative sampling Because more than 99% 
of unscreened pool abstracts are not DDl related, a 
random subset of unscreened pool is chosen as nega-
tive samples. These random negative samples may 
contain very small fraction of positive samples [33].

•	 Similarity samplingaims to quick screen out samples 
that more like samples in corpus, the cosine similarity 
(cosSIM) based on TF-IDF (Term Frequency-Inverse 
Document Frequency) [34] of each unlabeled sample 
and all the samples in corpus is used to evaluated. The 
TF(t) and IDF(t) of term t (word t) are formulated as

TF(t) measures how frequently a term t occurs in an 
abstract, and IDF(t) measures how important the term t 
is. In fact, certain terms that occur too frequently have 
little power in determining the relevance, therefore, we 
need to weigh up the effects of the less frequently occur-
ring terms. And then, we got the TFIDF for term t by 
computing the following:

Above multiplying TF(t) and IDF(t) results in the 
TFIDF score of a term t in an abstract. The higher the 
score, the more relevant that term is in that particular 
abstract. For each abstract, we derived 30 key terms with 
high TFIDF, and their frequency vector of each abstract 
was generated to calculate the cosine similarity (cosSIM). 
For example, abstracts A and B are two n-dimensional 
vectors, A = (A1,… ,An) and B = (B1,… ,Bn) , using 

TF (t) =
term t # in an abstract

total term # in an abstract
; IDF (t) = In

Total # of abstract

# of abstract with term t
;

TFIDF (t) = TF (t) × IDF (t);

the formula below we can find out the cosine similarity 
between A and B: 

Here, the cosine similarity of abstract A and B ranges 
from 0 to 1. In this study, sample in pools has its similar-
ity values with samples which are DDI related abstracts, 
the higher the similarity value, the more DDI related 
abstract likely. Similarity sampling is applied in conjunc-
tion with other sampling strategies in two sample pools, 
they will benefit to training models.

Existing AL analyses only uses uncertainty sampling. 
In this paper, we will study whether random negative 
sampling, positive sampling and similarity sampling will 
increase the performance of AL analysis.

Active learning with random negative sampling converges 
to the same optimal classifier as active learning
In our AL analysis, the absence of manual labeling 
reduces the expense involved with negative random neg-
ative sampling, but a small fraction of mislabeled nega-
tive samples requires correction to avoid classifier bias. 
Through the iterative AL process, we expect the asymp-
totic reduction of this bias to zero as the sample size 
grows. However, this random negative sampling scheme 
is beyond the scope of the current AL framework [35, 
36], which allows no mislabeled samples. Here is a heu-
ristic proof to clarify the convergence of AL with nega-
tive random negative sampling to the same AL optimal 
classifier.

Let us use a similar notion to that of Balcan and Long 
[37]. We assume that the data points (x, y) are drawn from 
an unknown underlying distribution DXY  over X × Y  . X 
is called the feature space (e.g. word frequencies in 
abstracts), and Y  is the abstract label. Here, Y = {±1} and 
X = ℝ

d , and d is the dimension. Without loss of general-
ity, we further assume that the feature space X is 

cosSIM(A,B) =
|A ⋅ B|
|A| × |B|

.

Table 2  Statistics of DDI corpus

+* (labeled positive samples), -* (labeled negative samples), R* (random negative samples)

Data Source Sample pool Data set Sample size Initial training set Initial 
validation 
set

PubMed Screened sample pool Labeled Positive 150 100 +* 50 +*

Labeled Negative 799 100 -* 50 -*

Unlabeled screened samples 3,169 50 R*

Unscreened sample pool Unlabeled unscreened samples 9,999 100 +* 50 +*

100 R* 50 -*

50 R*
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centralized in 0 after linear transformation. Let ℂ be a 
class of linear classifiers through the origin, that is 
ℂ =

�
sign(w ∙ x) ∶ w ∈ ℝ

d , ‖w‖ = 1
�
 . In an AL, the goal 

is to identify a classifier w ∈ ℂ of small misclassification 
error, where err(w) = P(x,y)D̃XY

[sign(w ∙ x) ≠ y] . Balcan 
and Long showed that with arbitrary small error ∈ and 
probability � , an AL needs at most 
O
((
d + log(1∕�) + loglog(1∕ ∈)

)
log(1∕ ∈)

)
labeled sam-

ples to identify a classifier with misclassification error 
less than ∈ and probability higher than 1 − � . This AL 
theory requires no misclassification error among sample 
labels.

In the unscreened sample pool, let us assume the mis-
labeling negative sample size,n∓ , is much smaller than 
negative samples in random negative sampling N− , i.e. 
n∓ ≪ N− . The true positive samples in the training set,N+ 
is also smaller than N−. Therefore, the error rate before the 
AL classifier is approximated in Eq. (1). Using the AL clas-
sifier, there will be n∓ × N+∕(N− + N+) mislabeled nega-
tive samples predicted to be positive, and their labels will 
be calibrated through the manual label in the AL. After AL 
calibration, the error rate of will be reduced to Eq. (2).

Practically, considering, n∓ = N−∕1000 and N+ = N−∕4 . 
The error is ∈ +0.001 before AL, and ∈ +0.001∕5 after 
one step AL calibration, and ∈ +0.001∕5m after m steps. 
Therefore, the misclassification error due to the mislabeled 
data will go to zero extremely fast. This heuristic proof has 
not yet considered the complications such as nonlinear 
classified, general log-concave distributions, and insepa-
rable positive and negative data in ℝd . Existing AL theo-
ries [37, 38] have shown and supported that error ∈ holds 
with required 

((
d + log(1∕�) + loglog(1∕ ∈)

)
log(1∕ ∈)

)

labeled samples under these conditions. We, however, 
will use the similar argument to show that the mislabeled 
error n∓∕(N− + N+) will become small after a number of 
AL steps.

Positive sampling improves AL optimization when sample 
population is overwhelming negative
Following the same annotation, ∈ is the prespecified 
misclassification error. Collecting positively labeled sam-
ples is not an easy task using uncertainty sampling alone 
when sample population is overwhelming negative. 

(1)Error rate before AL ∶ �
n∓

N− + N+

;

(2)

Error rate after AL � +
n∓

N− + N+

×

N+ + n∓ ×
N+

N− + N+

N− + N+

.

Here, population positive sample size N+ is significantly 
smaller than population negative sample size, N− . The 
misclassification error rate of negative samples is 
∈ ×

N−

N−+N+
 , while the misclassification error of positive 

samples is ∈ ×
N+

N−+N+
 . Given a positive sample in the sam-

ple pool available for selection, uncertainty sampling 
focuses on misclassified samples, and it has a ∈ ×

N+

N−+N+
 

chance in selecting this positive sample. On the hand, in 
positive sampling, top � , a percentage, positively pre-
dicted samples will be selected. Hence, positive samples 
have 

(
1− ∈ ×

N+

N−+N+

)
× � ≅ � chance to be selected, 

sinceN−≫ N+ . Therefore, positive sampling will have 
�∕(∈ ×

N+

N−+N+

) =
�

∈
×

N−+N+

N+

 times higher probability in 
selecting the positive samples than uncertainty sam-
pling. Practically, considering N+ = 50,000 positive DDI 
or PG related abstracts, and N− = 25,000,000 negative 
abstracts in PubMed, a misclassification rate ∈= 0.20 , 
and top � = 20% positively predicted samples are 
selected, positive sampling has �

∈
×

N−+N+

N+

= 501 times 
higher chance in selecting this positive sample in AL 
than uncertainty sampling does.

Active learning implementation in multiple sampling 
schemes in the unscreened sample pool (Fig. 1)

•	 Random negative sampling and initial training and 
validation datasets: According to the random nega-
tive sampling scheme, the initial training set con-
tains 100 random negative samples from unscreened 
sample pool and 100 labeled positive samples from 
screened sample pool. Machine learning model ML1 
is trained out. While the initial external validation set 
is made of 50 labeled negative samples, 50 positive 
samples and 50 random negative samples.

•	 Uncertainty sampling, positive sampling, and simi-
larity sampling: to predict the unlabeled samples in 
sample pool, a random subset (100 samples) with the 
low confidence samples (uncertainty sampling) and 
high confidence positively predicted samples (posi-
tive sampling) are collected from the unscreened 
sample pool. In the meantime, combined with the 
similarity values these extracted samples are similar 
with the samples in corpus, the top 20 samples with 
high similarity are extracted and manually reviewed 
(similarity sampling).

•	 Updating training and validation sets: the reviewed 
and labeled samples from previous multiple sam-
pling processing are divided and distributed equally 
into the initial training and external validation data 
sets. The new training set and external validation 
set for next round are produced.
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•	 Re-training: Using the updated training set, ML1 
is re-trained, and the multiple sampling scheme is 
applied again. Totally, four iterations are performed 
in active learning analysis.

•	 Performance evaluation: The performance of ML1 
from all rounds of AL analysis are evaluated using 
the updated external validation data set.

Active learning implementation with multiple sampling 
schemes in the screened sample pool (Fig. 1)

•	 Datasets: The initial training set contains 100 posi-
tive samples and 100 negative samples. Machine 
learning model ML2 is trained out. While the initial 
external validation set is made of 50 labeled negative 

Fig. 1  Stratified active learning with multiple sampling schemes
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samples, 50 positive samples and 50 random nega-
tive samples.

•	 Uncertainty sampling and similarity sampling : Due 
to AL in screened sample pool uses labeled samples 
as training sets, only uncertainty sampling and simi-
larity sampling are applied to unlabeled samples in 
screened sample pool. After predicting the unlabeled 
samples in screened sample pool, a random sub-
set (100 samples) with the low confidence samples 
(uncertainty sampling) are collected. Then, combined 
with the similarity value that extracted samples are 
similar with the samples in corpus, the top 20 sam-
ples with high similarity are extracted and manually 
reviewed (similarity sampling).

•	 Updating training and validation sets: the reviewed 
and labeled samples from previous multiple sampling 
processing are divided and distributed equally into 
the initial training and external validation data sets. 
The new training set and external validation set for 
next round are produced.

•	 Re-training: Using the updated training set, ML2 
is re-trained, and the multiple sampling scheme is 
applied again. Totally, four iterations are performed 
in active learning analysis.

•	 Performance evaluation: The performance of ML2 
from four rounds are evaluated using the updated 
external validation data set.

Data preprocessing
All the abstracts are processed after downloading from 
PubMed. They are parsed with desired content (titles and 
abstracts), and are converted into GENIA format. Multi-
ple abstract files are saved as text format in a folder. After 
going through Lowercase converting and StopwordsTo-
kenizer, a Doc object for each file consisting of the text 
split on single space characters is transformed by basic 
whitespace tokenizer. This Doc is to produce to tokens 
that feed into models.

Machine learning and deep learning analyses
Supporting vector machine (SVM) is used as the tradi-
tional machine learning method in AL. The appearance 
frequency of terms from the Doc followed Poisson dis-
tribution and was represented as a categorical term-doc-
ument occurrence matrix based on the word count. The 
terms with low frequency SDs were considered to lack 
useful information and specificity. Therefore, the terms 
with frequency SD > 0.03 were selected as features and 
used to train models.

FastText [39, 40] is used as a relatively simple deep 
learning (DL) algorithm in AL analysis. We utilize the 

“torch” module for text mining package in python. Fast-
Text is a multi-step approach for text classification (Fig. 2).

•	 Input layer: It is a document consisting of words, for 
example, “loratadine”, " increases”, " the”, " myopathy”, 
" risk”, " of “, “simvastatin”.

•	 Embedding layer: It maps words and the character 
N-grams (N = 2) into embedding vectors by looking 
up the hashed dictionary according to the global vec-
tors (GloVe). The input words and N-grams are rep-
resented as an array that would be taken as input and 
extract the features.

•	 Pooling layer: A fixed-length vector by performing 
feature selection, the pooling layer performs element-
wise averaging over all the word embeddings, fol-
lowed by the output layer.

•	 Softmax regression: The sigmoid function �(z) = 1

1+e−z
 

is used to formulate the prediction probability for an 
abstract: DDI positive and DDI negative.

Performance evaluation
DDI IR AL analysis is evaluated using the following evalua-
tion matrices: Precision (P) = TP/(TP + FP), Recall (R) = TP/
(TP + FN), and the F1-score = (2*P*R)/(P + R). P is reported 
when R is set as 0.95. This pre-specified high recall rate 
serves the purpose that we will miss only a small fraction of 
DDI relevant paper, i.e. 0.05, in our DDI IR analysis.

Results
Random negative sampling plays an effective role 
in unscreened sample pool
Random negative sampling expects that DDI-related 
abstracts are only a very small fraction of unscreened 
sample pool. According to the distribution of positive 
and negative samples in DDI corpus, 1,000 samples are 
randomly selected from unscreened sample pool and 
on displayed. In Fig. 3, t-SNE analysis tells the distribu-
tion of most random samples from unscreened pools are 
the same as the negative samples’ distribution. It further 
illustrates that most samples in the unscreened sample 
pool are non-DDI related abstracts from the perspective 
of clustering, which makes random negative sampling 
more reasonable and efficient in unscreened sample pool.

Negatively labeled abstracts are different between screened 
sample pool and unscreened sample pool
Between screened and unscreened samples pools, we 
found the distribution of the negatively labeled sam-
ples are different. Using t-SNE (t-Distributed Stochastic 
Neighbor Embedding) visualization, it maps the high-
dimensional data of abstracts to a lower dimensional 
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space. We randomly select 300 samples in each of the 
two pools. Based on the data preprocessing and word 
embedding of the high dimensional characteristics they 

have, t-SNE reduced to 2 dimensions. Using the top two 
dimensions of t-SNE analysis, Fig. 4 shows two distribu-
tions of negatively labeled samples between the screened 

Fig. 2  FastText scheme

Fig. 3  Distribution of samples from corpus and unscreened sample pool. Note: (A) shows the distribution of positive and negative samples in 
unscreened sample pool. B shows the positive and negative samples in the unscreened sample pool, and a random sub-sample in the unscreeed 
sample pool
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sample pool and the unscreened sample pool. The color 
in the contour plots represent the local density of the 
samples, and darker colored areas indicates higher den-
sity. Apparently, screened samples and unscreened 
samples have differently distributed negative samples. 
Therefore, this observation suggests that different clas-
sifiers are needed between screened sample pool and 
unscreened sample pool.

Stratified AL analysis identifies more DDI relevant abstract 
than DDI IR analysis using only screened sample pool
PubMed comprises more than 32 million citations for 
biomedical literature, through the query [“drug inter-
action” AND (Type of Study)] and [“drug combination” 
AND (Type of Study)], totally 142,520 relevant litera-
ture was obtained from the year 1956 to 2021. To fur-
ther verify that DDI relevant abstracts belong to very 
few of them, we random selected 1,000 samples from 
screened sample pool (pass the query) and unscreened 
sample pool. After manual reviewing and labeling, 
25 out of 1,000 samples in screened sample pool are 
positive, and only 1 out of 1,220 are positive for the 
unscreened sample pool. It preliminary estimated that 
DDI relevant abstracts (positive samples) are 2.5% 
and 0.1% in screened and unscreened pool, respec-
tively. Therefore, the estimated fraction of DDI rele-
vant abstracts in two pools is about 3,563 and 26,230. 
Therefore, if we just use the samples in screened sample 
pool, we will miss potentially a large number of positive 
abstracts in the unscreened pool.

Multiple sampling schemes improve the performance 
of AL analysis
SVM is used as the machine learning method for AL with 
multiple sampling schemes in screened sample pool and 
unscreened sample pool. In AL analysis, recall rate is all 
pre-specified at 0.95.

•	 Screened sample pool Fig. 5A compares the perfor-
mance of traditional uncertainty sampling AL (Un) 
and AL with uncertainty sampling and similarity 
sampling (UnS). When recall is set as 0.95, Un keeps 
increasing precision from 0.75 to 0.90 from round 1 
to 3 in AL analysis, until the precision performance 
drops in round 4. UnS, on the other hand, consist-
ently improves the precision from round 1 to 4, 
from 0.86 to 0.92. This analysis demonstrates that 
the UnS has more steady and significant improve-
ment of AL performance than the traditional Un 
method.

•	 Unscreened sample pool Fig.  5B presents the per-
formance of three sampling schemes AL: uncer-
tainty sampling + random negative sampling (UnR); 
uncertainty sampling + random negative sam-
pling + positive sampling (UnRP); and uncertainty 
sampling + random negative sampling + positive 
sampling + similarity sampling (UnRPS). In round 
1, when the recall is set at 0.95, UnRPS, UnRP, UnR 
have precisions of (0.75, 0.74, 0.63), respectively. 
Both UnRPS and UnRP out-perform UnR. UnR’s 
precision increases to 0.73 from round 1 to 3, but 

Fig. 4  t-SNE analysis for two sample pools. Note: (A) distribution of negative samples in the screened sample pool; and (B) distribution of negative 
samples in the unscreened sample pool
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drops in round 4. However, both UnRPS and UnRP 
keeps stable increases in precision from round 1 to 
4, and finally UnRPS has the best precision at 0.81. 
This analysis suggests that combined uncertainty 
sampling, random negative sampling, and similarity 
sampling leads to the best performance.

Deep learning method out‑performs the machine learning 
method in AL analysis
The performance of the embedding-based deep learning 
algorithm (FastText) is compared to SVM in AL analysis. 
Similar to the previous analysis, the recall rate is set as 0.95. 
The precisions are analyzed and reported in separate AL 
analyses from screened samples and unscreened samples.

•	 Screened sample pool Using FastText, at the begin-
ning, i.e. round 1, FastText with UnS reaches a preci-
sion 0.90 already. It out performs FastText with Un 
(precision = 0.86), SVM with UnS (precision = 0.86) 
and SVM with Un (precision = 0.75). During AL 
process, FastText with either Un and UnS sampling 
scheme improve the precision from round 1 to 4, 
though Un shows a larger variation than UnS. At the 
end, FastText with UnS has the best precision = 0.96. 
These trends are shown in Fig.  5A. These data sug-
gests that FastText, a DL method, has improved AL 
performance than SVM.

•	 Unscreened sample pool The performance of Fast-
Text in AL with multiple sampling schemes are com-
pared to SVM in unscreened sample pool (Fig.  5B). 
At the baseline, i.e. round 1, FastText with UnRPS or 
UnRP have the comparable best performance, pre-

cision = 0.80 and 0.81, respectively. Their precision 
steadily improve from round 1 to 4, and reach to 0.90 
and 0.88, respectively. These numbers are noticeably 
higher than those from SVM method with multiple 
sampling schemes.

Discussion
This study performed a comprehensive investigation on 
how various sampling schemes and machine learning 
algorithms improve AL for DDI IR analysis from litera-
ture. This is also the first time that AL is studied for its 
performance in DDI IR analysis. DDI IR analysis from 
PubMed abstracts faces the challenges of relatively small 
positive DDI samples and overwhelmingly large nega-
tive samples. New sampling schemes, including random 
negative sampling and positive sampling, are purposely 
designed to address these challenges. They reduce anno-
tation labor and improve the efficiency of AL analysis. 
The theoretical consistency of random negative sampling 
and positive sampling is also shown in the paper.

Practically, PubMed abstracts are divided into two 
pools. Screened pool contains all abstracts that pass the 
DDI keywords query in PubMed, while unscreened pool 
includes all the other abstracts. Our preliminary analy-
sis reveals that the unscreened pool contains seven times 
more DDI related abstracts, 26,230, than the screened 
pool, 3563. This shows that we cannot only rely on Pub-
Med query in retrieve DDI related abstracts.

At a prespecified recall rate of 0.95, DDI IR analysis 
performance is evaluated and compared in precision. 
In screened pool IR analysis using supporting vector 
machine (SVM), similarity sampling plus uncertainty 

Fig. 5  Performance of Multiple sampling in screened and unscreened sample pools. Notes:Precision in the figure presents the precision value 
when recall = 0.95. Un: uncertainty sampling; UnS: uncertainty sampling + similarity sampling; UnR: uncertainty sampling + random negative 
sampling;  UnRP: uncertainty sampling + random negative sampling + positive sampling; UnRPS: uncertainty sampling + random negative 
sampling + positive sampling + similarity sampling
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sampling improves the precision of AL over uncer-
tainty sampling, from 0.89 to 0.92 respectively. In the 
unscreened pool IR analysis, the integrated random 
negative sampling, positive sampling, and similarity sam-
pling improve the IR analysis performance over uncer-
tainty sampling along, from 0.72 to 0.81 respectively. 
When we change the SVM to a deep learning method, all 
sampling schemes consistently benefit DDI AL analysis in 
both screened pool and unscreened pool. Deep learning 
also has significant improvement of precision over SVM, 
0.96 vs. 0.91 in screened pool, and 0.90 vs. 0.81 in the 
unscreened pool, respectively. Please note that the recall 
is all set 0.95 for all occasions in our IR analysis. The 0.96 
and 0.90 precision performance are extraordinary.

Random negative sampling and positive sampling 
are effective methods in improving AL analysis when a 
sample pool is dominated with negative samples. In our 
DDI IR analysis, they effectively reduce the annotation 
workload, and improve the IR analysis performance. We 
believe these two sampling schemes are equally effective 
to other NLP applications where the positive and nega-
tive samples are imbalanced.

Similarity sampling can be a two-edged sword. If the 
initial samples are biased samples from the sample pool, 
similarity sampling will lead to biased samples, hence 
mis-trained machine learning models. On the other 
hand, uncertainty sampling itself can introduce a large 
variation in each individual sampling step, such that 
new samples can be highly different from original sam-
ples, and the convergence of active learning algorithm 
becomes questionable. This is where similarity sampling 
can effectively reduce the variability in active learn-
ing. We compared the active learning performance with 
or without similarity sampling in both screened sam-
ple pool and unscreened sample pool, and under two 
machine model, SVM and FastText (Supplementary Fig-
ures S1-S2). We repeated the activity learning five differ-
ent times independently. We can see similarity sampling 
significantly reduces the variation, and improves the 
convergency.

The least confidence sampling was not the only 
uncertainty sampling scheme in active learning, we also 
investigated two other uncertainty sampling schemes, 
named margin sampling [41] and entropy [42]. They 
have provided comparable performance (see Supple-
mentary Figures S3-S4).

Conclusion
This paper developed multiple sampling schemes and 
deep learning algorithms, and implemented them in 
the active learning (AL). This is the first time that AL is 
developed to preform drug-drug interaction information 

retrieval (DDI IR) analysis. The superior performance 
of deep learning to the conventional machine learning 
approaches is a major conclusion in AL DDI IR analysis. 
We further demonstrate that both positive sampling and 
random negative sampling schemes are highly effective 
sampling scheme in AL analysis, when positive samples 
are extremely small and negative samples are overwhelm-
ingly large.
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