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Abstract

Background: Biomedical ontologies pose several challenges to ontology matching due both to the complexity of
the biomedical domain and to the characteristics of the ontologies themselves. The biomedical tracks in the Ontology
Matching Evaluation Initiative (OAEI) have spurred the development of matching systems able to tackle these
challenges, and benchmarked their general performance. In this study, we dissect the strategies employed by
matching systems to tackle the challenges of matching biomedical ontologies and gauge the impact of the challenges
themselves on matching performance, using the AgreementMakerLight (AML) system as the platform for this study.

Results: We demonstrate that the linear complexity of the hash-based searching strategy implemented by most
state-of-the-art ontology matching systems is essential for matching large biomedical ontologies efficiently. We show
that accounting for all lexical annotations (e.g., labels and synonyms) in biomedical ontologies leads to a substantial
improvement in F-measure over using only the primary name, and that accounting for the reliability of different types
of annotations generally also leads to a marked improvement. Finally, we show that cross-references are a reliable
source of information and that, when using biomedical ontologies as background knowledge, it is generally more
reliable to use them as mediators than to perform lexical expansion.

Conclusions: We anticipate that translating traditional matching algorithms to the hash-based searching paradigm
will be a critical direction for the future development of the field. Improving the evaluation carried out in the
biomedical tracks of the OAEI will also be important, as without proper reference alignments there is only so much
that can be ascertained about matching systems or strategies. Nevertheless, it is clear that, to tackle the various
challenges posed by biomedical ontologies, ontology matching systems must be able to efficiently combine multiple
strategies into a mature matching approach.
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Background
The biomedical domain presents a strong case for the
application of ontologymatching, as there are hundreds of
biomedical ontologies which were mostly developed inde-
pendently, and many of them cover overlapping domains
[1]. Establishing meaningful links between such ontolo-
gies is critical to ensure interoperability and has the poten-
tial to unlock biomedical knowledge by bridging siloed
data. However, biomedical ontologies present some of the
most significant challenges to the field of ontology match-
ing, given their characteristics and the complexity of the
domain they cover.
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The first hurdle that ontology matching systems must
overcome to match biomedical ontologies is their large
size. Many of the most widely used biomedical ontolo-
gies have tens of thousands of classes (e.g., the Gene
Ontology, the Uber Anatomy Ontology) or even hun-
dreds of thousands (e.g., the SNOMED Clinical Terms,
the Chemical Entities of Biological Interest Ontology).
Handling such large ontologies presents computational
challenges throughout the ontology matching pipeline.
Matching systems must first be able to load the ontolo-
gies in a memory efficient manner, then circumvent the
quadratic complexity of the matching problem, and finally
be able to effectively select the final set of mappings from
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a potentially large universe of plausible mapping candi-
dates. Without tackling these challenges, ontology match-
ing systems cannot match large biomedical ontologies in
practice.
Another challenge in matching biomedical ontologies

is the rich and complex vocabulary of the biomedi-
cal domain. Biomedical ontologies possess a rich lexical
component, with each class being typically described by
several annotations such as labels and different types
of synonyms (e.g., exact, broad, narrow, related). For
example, the Uber Anatomy Ontology (UBERON) class
UBERON_0000948 has amongst its annotations: label
“heart”, exact synonyms “vertebrate heart” and “cham-
bered heart”, narrow synonym “branchial heart”, related
synonym “cardium”, and even relational adjective “cardiac”
[2]. Taking into account this lexical complexity is crit-
ical for matching biomedical ontologies effectively. On
the one hand, matching systems must make use of all
these annotations to obtain a reasonable recall, as what
is a label in one ontology may be a synonym in another.
On the other hand, systems must be able to account for
the different specificity of the various types of annota-
tions to successfully navigate through the many cases of
homonymy, paronymy, and overlapping words, and thus
attain a high precision. For example, the Foundational
Model of Anatomy (FMA) class 59762 has label “gingiva”
and exact synonym “gum” [3], but the word gum also has
different meanings in the biomedical context. It can refer
to a dietary gum, as is the case of the National Cancer
Institute Thesaurus (NCI) class C68500 which has “gum”
as exact synonym [4], and also to a type of drug prepa-
ration, as is the case of the SNOMED Clinical Terms
(SNOMED) class 426210003, which has “gum” as a label
[5]. However, the last two ontologies also have a class with
label “gingiva” (and synonym “gum”), so this case illus-
trates how valuing label-to-label mappings over mappings
involving synonyms would enable matching systems to
find the correct mappings and avoid the incorrect ones
when matching either of these two ontologies with FMA.
It is common across all domains that different ontolo-

gies have different modeling views of a given domain.
However, the complexity of the biomedical domain makes
this particularly challenging. Biomedical ontologies on the
same domain can have profound differences in organiza-
tion to the point that they are logically irreconcilable due
to conflicting restrictions. For instance, in NCI, anatom-
ical structures and proteins are modeled as disjoint, and
consequently the fibrillar or filamentous form of actin
(class C32581) which is an anatomical structure is disjoint
with the actin protein (class C16258). By contrast, in FMA,
proteins are modeled as anatomical structures, and fibril-
lar actin (class 67844) is actually a subclass of the actin
protein (class 67843). Thus, while it would be biologically
correct to map the classes describing the fibrillar form

of actin and the classes describing the actin protein of
each ontology, doing so would cause logical conflicts if the
two ontologies were integrated in this way. This example
illustrates the trade-off between completeness and logical
soundness that often must be considered when matching
biomedical ontologies [6].
The simple but particular semantics of biomedical

ontologies is another aspect that differentiates them from
the ontologies of other domains. Most biomedical ontolo-
gies have few properties and relatively simple semantics
– for instance, half of the ontologies in BioPortal fit into
the tractable OWL2EL profile [7]. This fact, together with
the lexical richness and frequent modeling differences of
biomedical ontologies, means that strategies for matching
these ontologies tend to rely primarily on lexical matching
algorithms, with structural matching algorithms taking a
secondary role, if employed at all. However, when they
are employed, structural matching algorithms should take
into consideration an object property of particular impor-
tance in biomedical ontologies—“part of”— which often
accounts for a second hierarchical backbone (a parton-
omy) in complement of the taxonomic backbone defined
by subclass relations.
While the specialized biomedical vocabulary may ren-

der general purpose lexical tools such as WordNet inef-
fective, the increasing profusion of biomedical ontologies
means that there are usually abundant sources of back-
ground knowledge available to ontologymatching systems
in the form of external related ontologies. The challenge
lies in identifying the most suitable and useful sources
of background knowledge among potentially hundreds
of candidate ontologies. Addressing this challenge has
been the topic of several studies which proposed metrics
for estimating the usefulness of background ontologies
[8, 9]. Of particular relevance as sources of background
knowledge are the efforts of the OBO Foundry to include
external references in their ontologies [10]. There are two
forms of these: direct cross-references to other ontolo-
gies, and logical definitions that correspond to composite
references to two or more other ontologies. Both are man-
ually curated, high-quality knowledge sources that can be
reused as background knowledge by ontology matching
systems.
The relevance of the biomedical domain for ontology

matching and the interesting challenges it raises have
motivated the inclusion of a growing number of biomed-
ical ontology alignment tasks in the Ontology Matching
Evaluation Initiative (OAEI). These tracks have played a
key role in driving forward the development of systems
and strategies to tacklemany of the challenges ofmatching
biomedical ontologies.While the OAEI has done an excel-
lent job at evaluating ontology matching at the system
level, assessing the contributions of the various strategies
implemented by each system is beyond its scope, as each
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system is different and the level to which systems can be
broken down into individual strategies varies.
In the interest of providing a more in-depth evaluation,

in this study we dissect the strategies employed by match-
ing systems to tackle the aforementioned challenges of
matching biomedical ontologies and gauge the impact of
the challenges themselves on matching performance. We
use AgreementMakerLight (AML) [11] as a platform for
the study, as it meets three critical criteria: it is one of the
top performing systems in the biomedical tracks of the
OAEI [12] and thus represents the state of the art; it was
designed specifically for matching biomedical ontologies
and thus to tackle most of the challenges involved therein;
and it has a modular architecture, which is essential to
enable the type of analysis we aim to conduct in this study.
It is also the matching system with which we are most
familiar, thus facilitating our work.
The rest of the manuscript is organized as follows: in the

“Related work” section we review how matching systems
participating in the OAEI have tackled the challenges of
matching biomedical ontologies; in the Methods, we pro-
vide a brief overview of AML, make an in-depth analysis
of the strategies AML and other top-performing match-
ing systems employ to tackle biomedical ontologies, and
describe the datasets and experimental setting; in the
Results and Discussion we dissect the impact of several of
the strategies implemented by AML on its effectiveness
and efficiency; and finally, in the Conclusions, we pro-
vide an overarching view of the study and ponder on the
aspects where the state of the art in matching biomedical
ontologies can be improved.

Related work
Throughout the history of the OAEI, a number of biomed-
ical ontology alignment tasks have been introduced and
multiple matching systems have participated in them. The
Anatomy track was introduced in the first OAEI proper,
in 2005. The Large Biomedical Ontologies track was intro-
duced in OAEI 2011.5 with two tasks, and expanded to
six tasks in OAEI 2012. More recently, the Disease and
Phenotype track was introduced in 2016 with two tasks,
and expanded to four tasks in 2017. Of the many sys-
tems that have participated in one or more editions of one
of these tracks, 27 have a peer-reviewed publication and
thus can be reviewed with respect to how they address
the challenges outlined in the previous section. Table 1
summarizes this information.
Handling the largest biomedical ontologies continues to

prove a tough challenge for ontology matching systems.
Of the surveyed systems, only 5 have been able to com-
plete the largest tasks of the Large Biomedical Ontologies
track at some point in their history. In 2016, only AML
and LogMap [13] did so out of 8 independent participants
[14]. Although this isn’t often detailed in publication, most

systems that are able to tackle large ontologies make use
of data structures with inverted indices that enable hash-
based searching rather than pairwise matching, and thus
circumvent the quadratic nature of ontology matching.
The lexical complexity of biomedical ontologies is also

an aspect which few ontology matching systems are pre-
pared to tackle. Most systems do make use of the Word-
Net [15], but this is a general purpose English lexical
tool, so while it may enable systems to find some lex-
ical variants, its coverage of the specialized biomedical
vocabulary is far from comprehensive. Thus, a few match-
ing systems such as FCA-Map [16] and LogMap [13] opt
for the domain specific UMLS SPECIALIST Lexicon [17].
The diversity of ontology annotations contemplated by
each matching system is unclear, but the use of weights
for synonyms is an uncommon feature, and a differentiat-
ing weighting scheme to reflect the precision of different
types of lexical annotations has only been reported in
AML [18].
Only a few systems consider “part of” relations when

employing structural matching algorithms: Agreement-
Maker [19], BLOOMS [20], PhenomeNET [21] and
SAMBO [22] consider it explicitly, whereas AML consid-
ers all relations.
The relevance of alignment coherence, which is to say,

an alignment that when used to integrate the input ontolo-
gies does not lead to logical unsatisfiabilities, has been
gaining traction within the ontology matching commu-
nity. The number of matching systems that either imple-
ment or reuse an alignment repair algorithm, while still
relatively low, has increased in recent years. Unfortu-
nately, the OAEI has not been able to provide a testing
ground for alignment repair that highlights the conflict
between completeness and logical coherence [23], as man-
ually curated reference alignments are not available for the
tasks in which alignment repair is a meaningful problem.
Until such a test is created, the evaluation of alignment
repair algorithms will remain superficial, and their use will
remain almost exclusively automated.
While the use of background knowledge is very com-

mon among ontology matching systems, we include as
background knowledge the usage of WordNet or the SPE-
CIALIST lexicon for lexical expansion (i.e., to enrich the
input ontologies with synonyms). The use of biomedical
ontologies (counting the UMLS Metathesaurus [17]) as
background knowledge sources is less common, occur-
ring in only 8 of the surveyed systems. Most systems
that use background knowledge employ fixed manually
selected sources, with only AML, GOMMA [9] and the
LogMapBio variant [24] implementing an automatic selec-
tion algorithm. The latter deserves particular mention in
that it makes use of BioPortal’s [1] search engine and thus
has access to virtually any biomedical ontology as back-
ground knowledge. The majority of the systems that use
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Table 1 Overview of the ontology matching systems that participated in OAEI biomedical tracks

System Size Lexicon Relations Repair Background knowledge OAEI Bio tracks

AgrMaker [19] + weights part of - Bio; Man; Med A

AML [11] +++ WN; weights all Logic Bio; Auto; M/E all

Anchor-Flood [40] + WN - - Man; Exp A

Aroma [41] +++ - - - - A, LB

ASMOV [42] + WN - - Bio; Man; Exp A

AUTOMSv2[43] ++ WN; weights - - Man; Exp LB-

BLOOMS [20] + WN part of - Bio; Man; Med A

COMMAND [44] + - - Logic - A

CroMatcher [45] + WN - - Man; Exp A

DKP-AOM [46] + WN - - Man; Exp A, LB-

DSSim [47] + WN - - Man; Exp A

FCA-Map [16] ++ UMLS - Logic Man; Exp all-

GMap [48] + external? - Logic Man; Exp A

GOMMA [49] +++ - - - Bio; Auto; Med A, LB

kosimap [50] + - - - - A

LogMap [13] +++ WN; UMLS - Logic Bio; Auto; M/E all

LP HOM [51] + - - - A

Lyam++[52] ++ BabelNet - - Man; Exp all-

MapPSO [53] + - - - - A

OACAS [54] + - - - - A

PhenomeNET [21] ++ (AML) part of - Bio; Man; Med DP

SAMBO [22] + WN part of - Bio; Man; Exp A

ServOMap [55] +++ WN - Logic Man; Exp A, LB

TaxoMap [56] + - - - - A

TOAST [57] + - - - - A

WikiMatch [58] ++ Wikipedia - - Man; Exp A, LB-

YAM++[59] +++ WN - Rules Man; Exp A, LB

Size details the systems’ capability of handling medium-sized (+), large (++) or very large (+++) ontologies; Lexicon lists their use of lexical tools such as WordNet (WN) or the
UMLS SPECIALIST Lexicon (UMLS), as well as whether they use synonym weights; Relations lists the types of relations they contemplate in addition to subclass relations; Repair
details whether they perform alignment repair based on logic or rules; Background Knowledge describes whether they use biomedical ontologies as background knowledge
(Bio), whether the process of background knowledge selection is manual (Man) or automatic (Auto), and whether background knowledge is used as a mediator (Med) or for
lexical expansion (Exp); OAEI Bio Tracks lists the tracks in which the system successfully competed in out of Anatomy (A), Large Biomedical Ontologies (LB), and Disease &
Phenotype (DP), with - indicating that the system did not complete the largest LB tasks

background knowledge make use of it for lexical expan-
sion, as that is the main usage of the WordNet. Of the
systems that employ biomedical ontologies as background
knowledge, most use these ontologies as mediators, by
mapping the background ontology to the background
knowledge ontology, and then intersecting the two back-
ground alignments to generate an alignment between the
input ontologies.

Methods
AML overview
AML is an ontology matching system originally devel-
oped to tackle the challenges of matching large biomed-
ical ontologies [11], as its namesake and predecessor

AgreementMaker [19] was not designed to handle ontolo-
gies of this size. While AML’s scope has since expanded,
biomedical ontologies have remained one of the main
drives behind its continued development.
AML’s ontology matching pipeline is divided into three

phases: ontology loading, matching, and filtering. The
pipeline is illustrated in Fig. 1.
In the ontology loading phase, the input ontolo-

gies are loaded using the OWL API [25], then parsed
into AML’s data structures [11]. The most important
of these are the Lexicon, which stores all the lexi-
cal information of an ontology in normalized form,
and the RelationshipMap, which stores the structural
information.
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Fig. 1 Flowchart representation of AML’s pipeline. The pipeline is divided into three stages: ontology loading, where input or background
knowledge (BK) ontologies are parsed and loaded into AML’s data structures; ontology matching, where matching algorithms generate mapping
candidates which are combined into a preliminary alignment; and filtering, where problem-causing mappings are removed from the preliminary
alignment to produce a final alignment

In the matching phase, AML’s various matching
algorithms (or matchers) are executed and combined.
These include [11, 12, 26]:

• The LexicalMatcher, which finds literal full-name
matches between the Lexicon entries of two
ontologies.

• The WordMatcher, which finds matches between
entities by computing the word overlap between their
Lexicon entries.

• The StringMatcher, which finds matches between
entities by computing the string similarity between
their Lexicon entries using the ISub metric [27].

• The ThesaurusMatcher, which find literal full-name
matches involving synonyms inferred from an
automatically generated thesaurus, as we
will detail in the next subsection.

• The MediatingMatcher, which employs the
LexicalMatcher to align each of the input ontologies
to a third background ontology, and then intersects
those alignments to derive an alignment
between the input ontologies.

• The XRefMatcher, which is analogous to the
MediatingMatcher, but relies primarily on OBO [10]

cross-references between the background ontology
and the input ontologies.

• The LogicalDefMatcher, which matches classes that
have equal or corresponding OBO [10] logical
definitions, as we will detail in a subsequent
subsection.

In the filtering phase, AML applies algorithms that
remove problem-causing mapping candidates from the
preliminary alignment to generate the final alignment.
The problems that are addressed include cardinality con-
flicts (i.e., cases where a class of one ontology is mapped
to more than one class of the other ontology) and logical
conflicts (i.e., cases where two or more mappings cause
the input ontologies to become unsatisfiable whenmerged
via those mappings).
Cardinality conflicts are resolved using the heuristic

Selector algorithm, which selects mappings in descending
order of similarity score in one of its three modes: ‘strict’,
in which all cardinality conflicts are resolved; ‘permissive’,
which accepts cardinality conflicts in the case of similar-
ity score ties; and ‘hybrid’, which accepts conflicting pairs
of mappings with high similarity score (above 0.75) and
otherwise behaves as the ‘permissive’ mode [11]. Logical
conflicts are resolved by the Repairer algorithm [23].
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Handling large ontologies
There are three key strategies implemented by AML
and other efficient ontology matching systems to match
large ontologies: hash-based searching, parallelization,
and search space reduction. Additionally, large ontologies
also pose problems with respect to the memory require-
ments of the similarity matrix.

Hash-based searching
The hash-based searching strategy is the most critical
strategy for scalability, as it effectively reduces the time
complexity of the matching problem from quadratic to
linear. This strategy relies on using data structures based
on HashMaps, with inverted indices, to store the lex-
ical information of the ontologies. By inverted indices,
we mean that rather than having the class ids as keys,
their lexical attributes (e.g., the various labels and syn-
onyms, or the words these contain) are used as keys and
the values are the sets of ids of the classes that have
each attribute. This enables matching systems to sim-
ply check whether each lexical attribute of one ontology
occurs in the other, rather than making pairwise com-
parisons of the classes of the two ontologies. Since the
attributes are HashMap keys, and HashMap access nor-
mally has O(1) time complexity, the hash-based searching
strategy has O(n) complexity overall, where n is the num-
ber of lexical attributes in the ontology with the least
attributes. By contrast, the traditional pairwise match-
ing strategy has O(mn) complexity where m and n are
the number of lexical attributes in the two ontologies
to match.
The one limitation of hash-based searching is that it

is usually restricted to finding equal attributes—at least
when default Java String hash keys are used, as is the case
in AML. Thus, it can be employed for literal full-name
matches (LexicalMatcher), for matches based on overlap-
ping words (WordMatcher), or even overlapping n-grams
(not implemented in AML), but not for traditional string
similarity comparisons (StringMatcher). Moreover, the
effectiveness of the hash-based searching strategy hinges
heavily on normalizing the lexical attributes a priori, in
order to maximize the number of equal entries found.
In the case of AML, lexical attributes are normalized

upon entry in the Lexicon, during the ontology load-
ing stage. This normalization consists in removing all
non-word non-digit characters (except parentheses and
dash), inserting white spaces where capitalization is found
within words (e.g., “hasPart” becomes “has Part”), and
finally converting all characters to lower case. However,
because biomedical ontologiesmay include special formu-
las (chemical or otherwise), AML uses patterns to detect
whether a lexical attribute is a normal word-based name
or a formula. In the latter case, the only normalization
done is the replacement of underscores with white spaces.

Parallelization
Parallelization is a common strategy for improving com-
putational efficiency that exploits the multi-core archi-
tecture of modern CPUs. In the context of ontology
matching, it typically consists on distributing the com-
putational load by the available cores by either running
different (matching) algorithms in parallel or dividing an
algorithm into a set of tasks and running those in parallel.
While parallelization does not affect the computational
complexity of the underlying algorithms, it can reduce
their execution time by a factor of up to N, where N is the
number of available CPU cores.
AML’s StringMatcher and Repairer algorithms are both

implemented for parallelization via subdivision into par-
allel tasks, given that they are the two main bottlenecks in
AML’s matching pipeline. AML’s remaining matching and
filtering algorithms are not implemented for paralleliza-
tion because they have linear complexity and run in at
most a few seconds for even the largest ontologies, so the
gain in parallelizing them would be negligible to AML’s
total run time.

Search space reduction
Under search space reduction, we include the two fami-
lies of strategies that aim to reduce the search space of the
ontology matching problem—partitioning and pruning—
as well as the strategy that aims to reduce the scale of the
alignment repair problem—modularization.
Partitioning or blocking consists in dividing the ontolo-

gies into (usually vertical) partitions or blocks in order
to transform a single large matching problem into sev-
eral smaller ones [28]. Its simplest application is to reduce
the memory requirements of the matching task, as is the
case in AML’s WordMatcher algorithm. However, it can
also be used to reduce the search space of the matching
problem by determining which blocks have a significant
overlap (typically using a hash-based searching strategy)
and attempting to match only those [29]. In this applica-
tion, it can improve not only the efficiency but also the
effectiveness of the matching process, by excluding false
positives.
Pruning encompasses any strategy that dynamically

avoids comparing parts of the ontologies without par-
titioning them beforehand [28]. The most common of
these strategies is precisely hash-based searching, as it
effectively only makes comparisons between entities that
have equal HashMap indices (be they names, words,
or n-grams). In addition to this form of pruning, AML
employs another form called local matching when apply-
ing traditional pairwise matching algorithms (such as the
StringMatcher) to large ontologies. This strategy con-
sists of matching entities only in the neighborhood of
mapped entities found using more efficient (and reliable)
hash-based search algorithms. Like blocking, it not only
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improves computational efficiency but can also help filter
false positives.
Modularization consists of identifying the classes that

are semantically relevant for determining whether an
alignment is coherent in order to reduce the search space
of the repair problem. It is akin to partitioning, but is car-
ried out after the matching stage, and contemplates both
the input ontologies and the alignment between them. To
enable modularization and reduce the complexity of the
repair problem, repair algorithms tend to consider simpli-
fications of the Description Logic of OWL—for instance,
the repair algorithms of both AML and LogMap are based
on propositional logic [13, 23]. AML’s modularization
reduces the search space of the repair problem both with
regard to the classes that must be tested for satisfiabil-
ity (since most tests are logically redundant) and with
regard to the classes that must be searched (only those
with multiple parents, or involved in mappings or logical
restrictions) [23].

Similaritymatrices
Another consideration that is critical for matching large
ontologies is that the memory requirement of a similarity
matrix between two ontologies scales quadratically with
their size. For example, for the FMA-SNOMED whole task
of the OAEI large biomedical ontologies track, the sim-
ilarity matrix would require an unwieldy 72 GB RAM if
similarity scores were stored with 8 Byte precision. The
strategy that AML and other efficient matching systems
employ to circumvent this problem is to store a sparse
matrix with only the meaningful similarity scores (i.e.,
those above a certain threshold, such as 0.5). In the case
of AML, this matrix is stored in the form of both a list of
mapping candidates, to enable sorting and selection, and a
HashMap-based table, to enable efficient searching. Each
of AML’s matchers produces one such sparse matrix, or
preliminary alignment, which can be combined with oth-
ers either by simple union (keeping the highest score for
the same mapping) or hierarchically (by adding only map-
pings from a less precise matcher that don’t conflict with
those of more precise matchers).

Handling the rich vocabulary of biomedical ontologies
Processing lexical annotations
AML, like most ontology matching systems that per-
form well in the biomedical domain, takes into account a
wide range of lexical annotations from biomedical ontolo-
gies. Namely, AML stores in the Lexicon the local names
(when not alphanumeric codes), labels, and all annota-
tions with properties corresponding to labels or synonyms
(e.g., “prefLabel”, “hasExactSynonym”, “FULLSYN”). The
various annotations are condensed into four lexical cate-
gories: ‘localName’, ‘label’, ‘exactSynonym’, and ‘otherSyn-
onym’. While this mapping is automatic, it covers the large

majority of the annotation properties presently in use in
biomedical ontologies and thesauri.
One strategy that, to the best of our knowledge, solely

AML employs is that it assigns different numeric weights
to each of its lexical categories, and uses these weights
to score each mapping of lexical origin. The weighting
scheme employed by AML is fixed, meaning that each lex-
ical category is given a predetermined weight that reflect
its expected reliability. This approach helps improve the
effectiveness of AML’s Selector as it leads to less similar-
ity ties and to mappings based on more reliable anno-
tations being scored higher than those based on less
reliable ones.

Inferring new synonyms
AML employs several strategies for automatically gen-
erating new synonyms, with the goal of improving the
coverage and effectiveness of its hash-based searching
algorithms. Having more synonyms increases the likeli-
hood that corresponding concepts are described using
equal lexical entries, and thus will tend to increase recall,
but may also decrease precision.
One strategy AML employs is to automatically gener-

ate synonyms for classes by removing stop words from
their names, using a predefined stop word list, as well
as by removing name portions within parentheses. For
example, for the SNOMED lexical entry “structure of
nervous system”, AML generates the synonym “nervous
system” by removing the leading stop words “structure”
and “of”, and adds this synonym to Lexicon assigned to all
classes for which the original entry was assigned. Anal-
ogously, for the NCI lexical entry “mixed mesodermal
(mullerian) tumor”, AML generates the synonym “mixed
mesodermal tumor” by removing the section within
parentheses.
Another strategy AML employs for synonym genera-

tion consists in generating a thesaurus by comparing the
various annotations of each class, and then using this
thesaurus to generate new synonyms [12, 18]. For exam-
ple, given a lexical analysis of the annotations ’stomach
serosa’ and ’gastric serosa’ for Mouse Gross Anatomy
Ontology (MA) class MA_0001626, AML would add
to its thesaurus that ’stomach’ and ’gastric’ are syn-
onymous words. It would then use this information to
generate new synonyms for lexical entries containing
either of the words by replacing it with the other. In
order to contain the loss in precision that this strat-
egy tends to generate, AML employs it in a dedicated
matching algorithm, the ThesaurusMatcher, which finds
only exact matches involving synonyms generated by the
thesaurus.
Finally, AML can also use background knowledge

sources to generate synonyms, but this strategy is detailed
in the next subsection.
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Exploiting background knowledge
Background knowledge selection
The problem of automatically identifying relevant sources
of background knowledge has been the subject of sev-
eral studies [8, 9]. Most rely on analyzing the background
knowledge sources to determine their overlap with the
input ontologies, yet overlap does not imply usefulness.
A background knowledge source is only useful if it con-
tains (lexical or structural) knowledge not contained in
the input ontologies and which is relevant to match
them, or in other words, if we can find new mappings
by using it (assuming it is reliable, and thus the map-
pings will mostly be correct). Given that, when employing
a hash-based search algorithm, the difference in cost
between computing a background knowledge alignment
and computing an overlap is negligible, we might as
well do the former and obtain a more direct measure of
usefulness.
These are the foundations of AML’s algorithm for auto-

matic selection of background knowledge sources [8].
This algorithm employs the concept of mapping gain,
defined as the relative number of new mappings that an
alignment would add to another alignment, as measure
of usefulness. In a first stage, it uses the mapping gain
over the baseline LexicalMatcher alignment to measure
the individual usefulness of each candidate background
knowledge source, and preselect them. In a second stage,
it iterates through the preselected sources in descend-
ing order of individual mapping gain, recomputes the
mapping gain over the current baseline alignment, and
if significant, adds that background knowledge alignment
to the baseline. Thus, it can not only identify the most
promising individual background knowledge source, but
also select a near-optimal combination of multiple back-
ground knowledge sources.

Information sources
Like most matching systems, AML relies primarily on
the lexical information of background knowledge ontolo-
gies (MediatingMatcher). However, when OBO cross-
references are available, it can use them instead of
or in addition to the lexical information via its XRef-
Matcher [26]. Cross-references are essentially manually-
curated mappings between an OBO ontology and oth-
ers, listed in the ontology itself. For example, the
UBERON class UBERON_0001275 (“pubis”) includes
cross-references (via annotation property “hasDbXRef”)
to FMA class 16595 (“pubis”) and NCI class C33423
(“pubic bone”). AML’s XRefMatcher employs these cross-
references instead of performing lexical matches between
the input ontologies and the background knowledge
ontology, then like the MediatingMatcher, intersects the
background knowledge alignments to derive an alignment
between the two input ontologies. In the example above, if

we were matching FMA to NCI using UBERON as a back-
ground knowledge source, it would map the FMA class
to the NCI class because they are referenced by the same
UBERON class.
Cross-references do not necessarily correspond to

equivalence relations; all that is implied is a close semantic
overlap. However, the same could also be said of ontology
mappings: even if formally equivalence is always implied,
the strictness with which it is meant varies from map-
ping to mapping. Thus, we found cross-references to be
more reliable than literal lexical matches for inferring
background knowledge mappings. For this reason, AML’s
XRefMatcher supersedes its MediatingMatcher, as it uses
cross-references when these are available, but comple-
ments them with lexical matches when the latter provide
at least twice the coverage of the input ontology. Thus,
it contemplates cases such as cross-references only being
available for one of the input ontologies, as well as being
available for both but only covering part of them.

Background knowledge usage
In addition to the traditional use of background knowl-
edge ontologies as mediators, AML can also use them
for lexical expansion, i.e., to generate new synonyms in
the input ontologies. This strategy consists in adding, for
each class of each of the ontologies to match that has
a correspondence to a class of the background knowl-
edge ontology, all the lexical entries of the latter as new
synonyms. These correspondences must first be estab-
lished by mapping the input ontologies to the background
knowledge ontology, via either the MediatingMatcher or
the XRefMatcher.
Given that the problem of handling large ontologies is

compounded when using background knowledge ontolo-
gies, as not one but three matching tasks are required,
the lexical expansion strategy enables AML to harness the
knowledge contained in background knowledge ontolo-
gies more efficiently. It makes no difference from the use
of background knowledge ontologies as mediators with
regard to finding full-name matches, but it allows for par-
tial matches to be indirectly derived from the background
knowledge ontology with a single use (rather than three)
of either the WordMatcher or the StringMatcher. How-
ever, deriving indirect partial matches can lead to a signif-
icant decrease in precision, meaning that this strategy can
be less reliable than the mediating strategy.

Using logical definitions
AML has recently begun exploring the use of the log-
ical definitions encoded in OBO Foundry ontologies
[10] for ontology matching [12]. Logical definitions
(or cross-products) correspond to composite mappings,
where a class of one ontology is declared as equiva-
lent to the intersection of two or more other classes of
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different ontologies. For example, the Human Phenotype
Ontology (HP) [30] class HP_0000892 (“bifid ribs”) cor-
responds to Phenotypic Quality Ontology [31] class
PATO_0000403 (“cleft”) inhering in the UBERON class
UBERON_0002228 (“rib”) with modifier PATO_0000460
(“abnormal”), as depicted in Fig. 2. They are not strictly
background knowledge in the sense that they are included
in the ontologies themselves, but they do correspond
to mappings to external ontologies. AML’s LogicalDef-
Matcher maps classes that have identical logical defini-
tions. Continuing from the previous example, it would
detect that Mammalian Phenotype Ontology (MP) [32]
class MP_0000153 (“rib bifurcation”) has the exact same
logical definition as HP_0000892 and thus map the two
classes, as shown in Fig. 2. This is an example of a map-
ping that could not be found through lexical or structural
matching approaches, but which logical definitions enable
us to find.

Evaluation
Datasets
The datasets used in this study were the OAEI 2016
datasets from the Anatomy, Large Biomedical Ontologies,
and Disease and Phenotype tracks [14]:

• The Anatomy track consists of matching the Mouse
Gross Anatomy Ontology [33] with the portion of the
NCI Thesaurus [4] describing the human anatomy. It
is evaluated using a manually curated reference
alignment.

• The Large Biomedical Ontologies track features six
matching tasks that consist in the pairwise matching
of FMA [3], NCI [4], and SNOMED [5] in two
modalities: small overlapping fragments, and whole
ontologies. The evaluation is based on reference
alignments derived automatically from the UMLS
Metathesaurus [17].

• The Disease and Phenotype track includes two tasks,
one consisting in mapping the Human Disease

Ontology (DOID) [34] to the Orphanet and Rare
Diseases Ontology (ORDO), and another consisting
of mapping the Human Phenotype Ontology (HP)
[30] to the Mammalian Phenotype Ontology (MP)
[32]. The evaluation carried out in the OAEI 2016
was primarily based on consensus alignments that
include all mappings found by either 2 or 3
participating matching systems.

Settings
To evaluate the impact of the various challenges of match-
ing biomedical ontologies and the strategies for tackling
them, we conducted a number of tests, which are further
detailed in the “Results” section.
All tests were carried out in a personal computer with

an Intel i5-4570 CPU @ 3.20GHz, with 10GB RAM allo-
cated to Java, and Windows 7 64-bit operating system.
Except were otherwise noted, the StringMatcher was run
concurrently on 4 CPU threads, and all other matching
algorithms were run using a single CPU thread.
When AML’s complete matching pipeline is mentioned,

it refers to the matching pipeline employed for the OAEI
2016 [12]. The sources of background knowledge available
to AML were also the same as it used in the OAEI 2016:
the Uber Anatomy Ontology (UBERON) [2], the Human
Disease Ontology (DOID) [34], and the Medical Subject
Headings (MeSH) [35].
Tests where only the run time was being assessed were

carried out in all datasets. Tests where the F-measure was
being assessed were carried out in only the Anatomy and
Large Biomedical Ontologies datasets (except where oth-
erwise noted) since a consensus alignment, as used in
the evaluation of the Disease and Phenotype track, was
deemed insufficiently accurate for the purpose of this
study.
In the final test of this study, we performed a manual

evaluation of the mappings found uniquely through logi-
cal definitions from the HP-MP task (as logical definitions
are only available for the ontologies in this task). These

Fig. 2 Example of a logical definition shared by a Human Phenotype Ontology and a Mammalian Phenotype Ontology class, which enables their
mapping
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mappings were produced with older versions of the logical
definitions of the HP ontology, which mapped to the FMA
rather than to UBERON. Thus to derive HP-MP map-
pings based on logical definitions, the cross-references
between UBERON and FMA were used to provide cor-
respondences between the logical definitions, when the
definitions were otherwise identical.

Results
Efficiency tests
Hash-based searching versus pairwise comparisons
In order to compare the efficiency of hash-based search-
ing with traditional pairwise comparison algorithms, we
implemented a functional equivalent of AML’s Lexi-
calMatcher that makes pairwise equality comparisons
instead of hash-based searches. We compared the run
time of this QuadraticLexicalMatcher (running concur-
rently on 4 CPU threads) with that of the LexicalMatcher.
Furthermore, we performed a power law regression of the
run times of the two approaches as function of the number
of lexical entries in the matching task.
The results of this comparison are shown graphically

in Fig. 3, and detailed in Table 2. The difference in scale
between the run times of the two approaches is readily
apparent, as the LexicalMatcher runs in under a second
for even the largest tasks whereas the QuadraticLexical-
Matcher ranges from 9 seconds for the Anatomy task
to over 4 hours for the three whole ontologies tasks of

Table 2 Run time comparison between the hash-based
LexicalMatcher (in milliseconds) and its functional equivalent
QuadraticLexicalMatcher that performs pairwise comparisons (in
seconds), on all biomedical OAEI 2016 tasks

Task
LexicalMatcher QuadraticLexicalMatcher

Hash-based Time (ms) Pairwise Time (s)
searches comparisons

Anatomy 3,072 38 15,587,328 9

FMA-NCI small 11,515 65 224,715,225 84

FMA-SNOMED small 26,295 311 959,057,535 323

DOID-ORDO 40,683 191 2,892,154,470 1,071

HP-MP 59,240 358 3,696,339,040 1,672

SNOMED-NCI small 76,134 372 5,803,999,356 2,579

FMA-SNOMED whole184,484 761 41,136,795,77214,984

SNOMED-NCI whole 184,484 801 35,189,031,61215,640

FMA-NCI whole 190,743 721 42,532,446,36915,509

the Large Biomedical Ontologies. The power law regres-
sions reveal that the LexicalMatcher has a sub-linear
behavior (exponent 0.75) as function of the number of lex-
ical entries, whereas the QuadraticLexicalMatcher has a
near-quadratic behavior (exponent 1.8).

Local versus global stringmatching
The application of traditional string matching algorithms,
such as ISub [27], requires pairwise comparisons and

Fig. 3 Run time versus number of lexical entries, in a log-log scale, for the hash-based searching LexicalMatcher and its functional equivalent but
pairwise comparing QuadraticLexicalMatcher. Power law regression curve and equation are shown for each algorithm. The LexicalMatcher was
executed using a single CPU thread, whereas the QuadraticLexicalMatcher ran asynchronously on 4 CPU threads



Faria et al. Journal of Biomedical Semantics  (2018) 9:4 Page 11 of 19

thus is not scalable. Thus many matching systems forgo
their use, instead opting for approximations based on
hash searches (such as n-gram overlap). AML is able to
make use of string matching algorithms by employing
them locally, in the vicinity of mappings derived through
hash-based searching. The expectation is that this local
matching strategy scale approximately linearly with the
size of the ontologies (in number of classes rather than
lexical entries, as it is at its core a structural algorithm).
To assess whether that is the case, we measured the run
time of AML’s StringMatcher when used (locally) in its full
matching pipeline and performed a power law regression
as function of the number of classes (of the input ontology
with the most classes).
The results of this regression, shown in Fig. 4, reveal that

the behavior of the local StringMatcher is on average sub-
linear (exponent 0.76), and while there is substantial varia-
tion from this behavior, it is bound byO(n log(n)). In more
concrete terms, the local StringMatcher runs in 13 sec-
onds in the worst case, whereas the global algorithm has
an expected run time of over 8 hours for the three whole
ontologies tasks of the Large Biomedical Ontologies.
To assess the effectiveness of applying string match-

ing only locally in comparison with applying it globally,
we ran AML’s full matching pipeline replacing the local
StringMatcher with a global run of that algorithm, and
compared the F-measure of the pipeline with the global
and local variants. We did not run this test on the
Large Biomedical Ontologies whole ontologies tasks, as

the expected run time of the global StringMatcher in these
tasks exceeds 8 hours, and the conclusions drawn from the
small overlapping fragments tasks can be extrapolated to
these tasks. The results of this comparison are shown in
Table 3.
The results show that, as expected, employing the global

StringMatcher has an advantage with respect to recall in
most tasks (the exception being Anatomy). The counter-
point is that precision is significantly lower than when the
local variant is employed, to the effect that the F-measure
is also lower in most tasks (except for FMA-SNOMED
small).

Lexical richness tests
All lexical annotations versus primary annotation
The number and variety of lexical annotations per class
are a feature of biomedical ontologies that should be taken
into account when matching them. In order to assess the
impact of this lexical richness, we compared the perfor-
mance of AML’s LexicalMatcher when using all available
lexical annotations (as normal) and when using only the
primary name of each class. To avoid introducing an exter-
nal bias, we turned off AML’s automatic generation of
synonyms for this test, so that only the lexical richness of
the ontologies themselves is considered.
The results of this test, as shown in Table 4, are conclu-

sive in that the effect of considering all lexical annotations
leads to a substantial increase in F-measure in all tasks,
ranging from 4.7% in the case of Anatomy to 18.3% in the

Fig. 4 Run time versus number of classes, in a log-log scale, for the StringMatcher applied locally, in the neighborhood of the mappings found by
the other matching algorithms in AML’s pipeline. Both power law regression curve and equation, and bounding n.log(n) curve and equation are
shown. The algorithm ran asynchronously on 4 CPU threads
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Table 3 Evaluation of AML’s full matching pipeline with the StringMatcher run locally and run globally

Task
Local StringMatcher Global StringMatcher

Prc Rec F-m Time (s) Prc Rec F-m Time (s)

Anatomy 95.0% 93.6% 94.3% 0.74 94.1% 93.5% 93.8% 141

FMA-NCI small 95.8% 91.0% 93.3% 0.36 95.1% 91.5% 93.2% 164

FMA-SNOMED small 92.3% 76.2% 83.5% 0.85 88.2% 79.7% 83.8% 796

SNOMED-NCI small 91.4% 73.6% 81.6% 9.7 86.1% 75.5% 80.5% 5010

Precision (Prc), Recall (Rec), and F-measure (F-m) of the alignment produced by each strategy, and execution time of the StringMatcher algorithm

case of the FMA-NCI small task. They demonstrate that
taking into account all lexical annotations of biomedical
ontologies is clearly necessary to match them effectively.

Weighted versus unweighted lexical annotations
To evaluate the contribution of differentiating between
different kinds of lexical annotations, we ran AML’s full
matching pipeline with its weighting scheme turned off,
and compared the results to those of the normal pipeline.
The results of this comparison, shown in Table 5, reveal
that the use of Lexiconweights improves the F-measure in
all matching tasks except for FMA-SNOMED small where
there is a tie. Themost extreme case is that of theAnatomy
task, where the F-measure increases by 6.3%.

The contribution of the ThesaurusMatcher
AML’s ThesaurusMatcher exploits the lexical richness of
biomedical ontologies to infer new synonyms through
automatic lexical composition analysis, and thereby find
new mappings. In order to assess the extent to which
new knowledge can be generated by such an approach,
and how reliable it is, we compared the performance of
LexicalMatcher plus ThesaurusMatcher with the perfor-
mance of the LexicalMatcher alone. The results of this
comparison are presented in Table 6.
We can see that the ThesaurusMatcher leads to a con-

sistent increase in recall, but decrease in precision in all
tasks. For Anatomy, and the Large Biomedical Ontologies
small tasks the balance is positive, as the resulting F-
measure is greater than without the ThesaurusMatcher.

For FMA-NCI whole and FMA-SNOMED whole, it is neg-
ative, whereas for SNOMED-NCI whole, it is essentially
neutral.

Background knowledge tests
Comparison of information sources and usage strategies
There are two main strategies for using background
knowledge ontologies: as mediators, or for lexical expan-
sion. There are also two types of information that can
be used to map the background knowledge ontologies
to the input ontologies: lexical information, and cross-
references. We evaluated AML’s full matching pipeline
with the background knowledge matching component
modified appropriately to cover all four combinations of
these two factors. We carried out this evaluation on the
Anatomy and FMA-NCI small tasks, as these are the
only tasks in which the coverage of the available cross-
references from UBERON is comparable to its lexical
coverage, and thus for which comparing the two informa-
tion sources would be fair. The results of this evaluation
are shown in Table 7.
The first observation we can make from the results is

that cross-references are the best source of information in
both tasks, albeit with different usage strategies, and are
better than using lexical information regardless of strat-
egy. The lexical expansion strategy produces strictly worse
results than the mediator strategy when based on lexical
information.When based on cross-references, it produces
a higher recall than the mediator strategy, and in the case
of the Anatomy task, a higher F-measure as well.

Table 4 Comparison between the LexicalMatcher using all class names and synonyms, and using only primary names

Task
All names & synonyms Primary name

Precision Recall F-measure Precision Recall F-measure

Anatomy 96.1% 69.7% 80.8% 99.7% 61.5% 76.1%

FMA-NCI small 97.5% 77.5% 86.4% 99.5% 51.7% 68.1%

FMA-SNOMED small 98.8% 19.9% 33.2% 99.2% 15.1% 26.2%

SNOMED-NCI small 96.5% 52.6% 68.1% 98.9% 40.6% 57.6%

FMA-NCI whole 69.5% 77.5% 73.3% 96.7% 51.7% 67.4%

FMA-SNOMED whole 94.6% 19.9% 32.9% 96.6% 15.1% 26.1%

SNOMED-NCI whole 86.7% 52.6% 65.5% 96.8% 40.6% 57.2%
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Table 5 Comparison between AML’s full matching pipeline with and without the use of Lexicon weights to score the mappings

Task
Lexicon weights No Lexicon weights

Precision Recall F-measure Precision Recall F-measure

Anatomy 95.0% 93.6% 94.3% 81.3% 95.8% 88.0%

FMA-NCI small 95.8% 91.0% 93.3% 94.6% 91.1% 92.8%

FMA-SNOMED small 92.3% 76.2% 83.5% 90.9% 77.3% 83.5%

SNOMED-NCI small 91.4% 73.6% 81.6% 89.9% 74.1% 81.2%

FMA-NCI whole 83.8% 87.2% 85.5% 78.3% 86.4% 82.2%

FMA-SNOMED whole 88.0% 69.0% 77.4% 84.4% 70.3% 76.7%

SNOMED-NCI whole 89.7% 67.1% 76.8% 86.4% 67.1% 75.6%

On the use of logical definitions
Another source of information that can be exploited for
matching biomedical ontologies are OBO logical defini-
tions. AML and PhenomeNET [21] both explored the use
of logical definitions in the OAEI 2016’s HP-MP task from
the Disease and Phenotype track.
Because there is no manually validated reference align-

ment for the HP-MP task, we assessed the contribution of
the LogicalDefMatcher by manually evaluating the map-
pings found by this matcher and not by AML’s pipeline
when this matcher is disabled.We classified eachmapping
as: equivalent, if the two classes were deemed semanti-
cally equivalent; overlapping if the classes were not strictly
equivalent (one was slightly broader than the other) but
sufficiently similar that a direct mapping between the two
would be conceivable depending on the scope of the align-
ment; or false, if the classes were too dissimilar to be
mapped. The full results of this manual evaluation are
included in the Additional file 1.
Out of the 92 mappings identified only with the Log-

icalDefMatcher, we found that 49 were equivalent, and
an additional 21 were overlapping, therefore in total 70
mappings were plausibly correct. This gives us a best case
precision of 76.1%, and a worst-case precision of 53.3% (if
we consider only the strictly equivalentmappings correct).
Given that these 92 mappings represent 5% of the total
mappings found by AML, their contribution to AML’s

recall should be significant even in the worst case, but in
the absence of a reference alignment, we cannot deter-
mine it, nor can we ascertain whether the contribution of
this matcher is positive with respect to F-measure.

Discussion
Efficiency tests
The evaluation of the hash-based searching strategy
against the traditional pairwise comparison strategy
leaves no room for doubt that hash-based searching is
scalable, and able to tackle even the largest ontology
matching problems efficiently. One aspect that our test
did not contemplate (as it would be impossible to do so
without developing an ontology loading algorithm anew)
is that building the HashMap data structures required for
hash-based searching has a cost in both run time and
memory in comparison to using simpler data structures
such as lists. However, this cost is, in practice, negligible.
With respect to run time, populating aHashMap hasO(n)
complexity (even if it is slower than populating a list) and
thus is largely compensated by the reduction in the com-
plexity of the matching process, even for small ontologies.
HashMaps do require significantly more memory than
lists, but even for the largest ontologies, the total mem-
ory requirements are unremarkable for modern computer
standards. For instance, AML’s total memory requirement
for loading the largest ontologies in the OAEI is under 1.8

Table 6 Comparison between the combination of LexicalMatcher and ThesaurusMatcher, and the LexicalMatcher alone

Task
Lexical+Thesaurus Lexical only

Precision Recall F-measure Precision Recall F-measure

Anatomy 95.7% 71.4% 81.8% 96.1% 69.7% 80.8%

FMA-NCI small 95.8% 83.7% 89.3% 96.8% 81.8% 88.7%

FMA-SNOMED small 96.9% 62.9% 76.3% 97.8% 62.2% 76.0%

SNOMED-NCI small 95.5% 59.9% 73.6% 95.9% 59.1% 73.1%

FMA-NCI whole 63.0% 82.9% 71.6% 65.4% 81.8% 72.7%

FMA-SNOMED whole 90.1% 62.8% 74.0% 92.8% 62.2% 74.5%

SNOMED-NCI whole 81.3% 59.7% 68.8% 82.0% 59.1% 68.7%
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Table 7 Evaluation of AML’s matching pipeline in the Anatomy
and FMA-NCI small tasks with different combinations of
background knowledge information source (lexical vs.
cross-references) and usage strategies (mediator vs. lexical
expansion)

Task BK info BK usage Precision Recall F-measure

Anatomy Lexical Mediator 94.8% 91.0% 92.9%

(1365-1352) Expansion 94.6% 90.2% 92.4%

Cross-refs Mediator 93.4% 92.5% 93.0%

(1389-1401) Expansion 95.0% 93.6% 94.3%

FMA-NCI small Lexical Mediator 93.9% 91.7% 92.8%

(1624-1598) Expansion 93.6% 91.5% 92.5%

Cross-refs Mediator 95.8% 91.0% 93.3%

(1541-1559) Expansion 94.2% 92.0% 93.1%

The number of classes of the two input ontologies covered by each information
source is shown within parentheses below the source in each dataset

GB, of which 60% are spent by the OWL API alone, and
the whole loading process takes approximately 1 minute
in the machine used in testing (of which under 25% is
spent on populating the Lexicon HashMaps). Thus, it is
clear that hash-based search strategies should replace tra-
ditional pairwise comparisons whenever possible, be it for
finding equal lexical entries, or entries with overlapping
words or n-grams.
While computing traditional string similarity requires

pairwise matching, our evaluation shows that AML’s local
stringmatching strategy is an effective search space reduc-
tion strategy. It enables the matching of even the largest
ontologies in seconds, whereas performing a full global
string match would take several hours. Moreover, the
results suggest that the strategy is scalable, with a worst
case O(n log(n)) complexity with respect to the size of the
ontologies.
In addition to being scalable, a search space reduction

strategy should at least approximate the results of per-
forming a full space search in order to be useful. Our
experiments revealed that, as expected, there is some loss
of information when performing a local string match, as
the recall of the global string match is usually higher (with
the exception of the Anatomy task). However, the local
stringmatch has an advantage in terms of precision, which
more than compensates for its lower recall, leading to a
higher F-measure in most tasks (except FMA-SNOMED
small). Thus, the results indicate that the local string
matching strategy is actually more effective than global
string matching, in addition to being much more efficient.
The reason for this advantage in effectiveness is tied

with the issue of the lexical complexity of biomedical
ontologies. Although there are many similar lexical vari-
ants of the same concept that can be found through a

string similarity metric, there are also many cases of dif-
ferent concepts that have similar names, which will also
be matched with such a metric (e.g., ‘olfactory receptor
nerve’ and ‘olfactory receptor neuron’). By matching only
classes in the vicinity of previously found (usually high-
quality) mapping candidates, we are able to exclude many
of these false positives, with some loss of true positives,
but resulting in a better alignment overall.
Evidently, one factor behind the effectiveness of the local

string matching strategy is that the preliminary alignment
prior to its execution was already fairly extensive, thanks
to the use of adequate background knowledge as well
as the WordMatcher. However, our goal was precisely to
assess whether a complete matching system such as AML,
which relies solely on hash-based searching or otherwise
scalable matching techniques, would stand to improve by
employing traditional (global) string matching, were effi-
ciency considerations put aside. The results clearly point
to the conclusion that it wouldn’t.
The local approach to string matching is, in a sense, a

fusion between a structural and a lexical matching algo-
rithm, and it combines advantages of the two approaches.
One the one hand, pure structural matching algorithms
are often unreliable for biomedical ontologies due to their
modeling differences, so making string similarity compar-
isons to validate potential structural matches makes sense.
On the other hand, as we have shown, string matching can
generatemany false positives in the biomedical domain, so
it also makes sense to filter string matches using structural
information. Evidently, if the conclusion is that we want to
filter string matches with structural information, then it is
vastly more efficient to consider that information a priori,
as the difference in run time between the local and global
StringMatcher makes clear.

Lexical richness tests
Our lexical richness experiments have made clear that the
number and variety of lexical annotations per class are a
feature of biomedical ontologies that should be taken into
account when matching them.
With respect to number, the results were conclusive in

showing that considering all lexical annotations available,
as most state-of-the-art systems do, is more effective than
considering only the primary name of each class. The rich
biomedical vocabulary is filled with synonyms, with their
usage varying between communities, and only by making
use of all available synonyms can biomedical ontologies
from different communities be effectively bridged.
Concerning variety, the results showed that taking into

account the different levels of precision of the various
types of synonyms by weighting is clearly advantageous
over considering them all on equal footing. This is unsur-
prising given that broad and narrow synonyms are, by
definition, less precise than exact synonyms or labels.
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Nevertheless, these results do not imply that it is neces-
sary to explicitly take into account the reliability of lexical
annotations. After all, the experiment is inextricably tied
to AML’s filtering strategy, and it is plausible that with
a different strategy (e.g., one that made use of structural
information) such a necessity would not be felt. More-
over, strategies other than weighting could be devised for
taking the reliability of lexical annotations into account.
That said, AML’s weighting strategy is likely the simplest
strategy for doing so, and its extremely low computational
cost leads us to posit that other matching systems would
stand to gain by adopting a similar strategy, provided that
the weighting scheme employed reflects the precision of
the different synonyms and the matching thresholds are
revised to take the weighting into account.
Our experiment with AML’s ThesaurusMatcher showed

that, while it is essential to account for the lexical com-
plexity of biomedical ontologies when matching them,
that complexity can also be exploited to generate new
knowledge. More concretely, lexical composition analysis
can be applied automatically to generate new synonyms,
which can then be used to help match the ontologies.
The fact that, at present, this strategy is unreliable for
very large ontologies suggests that the algorithm may not
be sufficiently mature, but we expect that with further
development it can be refined to address these limitations.
There are a few oddities in the results that merit fur-

ther comment. The extremely low recall observed in the
FMA-SNOMED tasks in the first test (Table 4) is a conse-
quence of the peculiar terminology SNOMED employs for
anatomical structures. The names of most of these struc-
tures actually feature the word “structure” (e.g., “structure
of nervous system”) whereas FMA simply lists the name of
the structure itself (e.g., “nervous system”). AML handles
this variation through its stop-word synonym generator,
but when it is turned off, as it was in this test, finding
these matches becomes impossible using a literal lexical
matcher alone (as used in the test). The low precision
in the FMA-NCI whole task in the first test (Table 4),
when using all names and synonyms, is due to the fact
that the NCI includes both a branch devoted to human
anatomy and a branch devoted to mouse anatomy, and
only the former is mapped to FMA in the reference align-
ment (because it is derived automatically from UMLS).
The NCI mouse anatomy classes all include the acronym
“MMHCC” at the end of their primary names, and for
this reason are not matched when only primary names are
used, but they do include synonyms without this acronym
which are identical to human anatomy names, and thus
are matched when all lexical annotations are considered.
The extreme loss in precision in the Anatomy task in the
second test (Table 5), when no weights are used, is due to
the fact that this is the only task in which lexical expan-
sion is (automatically) used by AML, which leads to an

increase in the number of conflicting mappings. With-
out its weighting system, AML cannot effectively filter the
alignment, which leads to a worse precision.

Background knowledge tests
Exploiting background knowledge effectively is a key fac-
tor to successfully matching biomedical ontologies, as evi-
denced by the results of the OAEI’s biomedical tracks [14].
Two key aspects in using background knowledge ontolo-
gies are what information source to use to map them with
the input ontologies, and how to make use of them once
they are mapped.
With respect to the information source, our experi-

ments indicated that cross-references perform better than
lexical information. This, of course, is conditional on
cross-references being available (which is presently only
true for some OBO ontologies) and their coverage being
extensive. Even when they are not extensive, we can gen-
erally expect cross-references to be more reliable than lex-
ical information, with the caveat that the intended scope
of the alignment agree with that of the cross-references.
That may not always be the case: for example, as we men-
tioned previously, the NCI ontology includes a branch
on mouse anatomy (not present in the small task) that
in the UMLS-based reference alignment is not mapped
to the FMA (since the UMLS is primarily focused on
human health) but in the UBERON cross-references is (as
UBERON is a multi-species anatomy ontology). Were we
to tackle the FMA-NCI whole task, we might be able to
exclude the mouse anatomy branch with lexical informa-
tion (thanks to the presence of the “MMHCC” acronym)
but we wouldn’t be able to do so with the UBERON cross-
references. Thus, if the intended scope of our alignment
were human health, we would likely be better off using
lexical information, but if it were broader, the UBERON
cross-references would be best.
Concerning the usage strategy, our results were not

fully conclusive as to whether mediator usage or lexi-
cal expansion is the better strategy. However, there are
some discernible patterns that merit discussion.When the
information source is lexical, it is clear that lexical expan-
sion leads to strictly worse results than mediator usage.
This may seem surprising, as the reasoning behind the
lexical expansion strategy is to enable word and string
matching to be applied using the information from the
background knowledge source. Thus, we would expect
that lexical expansion lead to at least a higher recall.
The catch is that in performing expansion, the indirect
matches from the background knowledge source are put
on par with the direct lexical matches between the input
ontologies, and this apparently leads to cases of wrong
mappings being selected instead of correct ones. When
cross-references are the information source, lexical expan-
sion does lead to an increase in recall over mediator usage
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in both datasets, which shows that the reasoning behind
the lexical expansion strategy is not without merit.
The observation that, with cross-references, lexical

expansion leads to an increase in F-measure as well for
Anatomy but a decrease for FMA-NCI small brings us
to murky territory, as it is tied to the fact that even
among human experts there is disagreement on what
constitutes a mapping. Consider that both the Anatomy
reference alignment and the UBERON cross-references
between these ontologies are manually curated and have
as scope inter-species anatomy correspondences. Yet, the
Anatomy reference alignment is more extensive (1516 vs.
1409 mappings) and their agreement is high but only par-
tial (1342 mappings in common). Debating whether one
is more correct than the other goes beyond the scope
of this manuscript. What we can say, is that by hap-
penstance, employing the lexical expansion strategy with
UBERON cross-references brings the resulting alignment
closer to the Anatomy reference alignment. In the FMA-
NCI small task things are different in that the extension
of the reference alignment is substantially greater than
that of the UBERON cross-references (2686 vs. 1460 map-
pings) because they differ in scope (both the FMA and
NCI include a genetic component that is not present
in UBERON, but is present in the UMLS-derived ref-
erence). In this case, performing lexical expansion does
enable the finding of more correct mappings, but at the
cost of a greater loss in precision and consequent loss in
F-measure.
OBO logical definitions, like cross-references, represent

an additional, non-lexical source of information that can
be used for ontology matching. Whereas cross-references
are direct mappings between an ontology and another,
logical definitions are composite mappings between an
ontology class and two or more classes from differ-
ent external ontologies with the intent of defining the
former class semantically (as depicted in Fig. 2, and
described in the “Methods” section). Our evaluation has
made clear that logical definitions are a less reliable
source of information for matching than cross-references,
undoubtedly due to their composite nature, which means
that using logical definitions in an automated ontology
matching scenario is risky. However, given that they are
able to find mappings that are not identifiable through
lexical methods, using them in a semi-automated sce-
nario, where users are available for validation, would be
promising.

Conclusions
Biomedical ontologies pose several challenges to ontology
matching due to their size, their lexical richness and com-
plexity, their often profound modeling differences, and
the necessity of using background knowledge to match
them effectively. In this study, we dissected and evaluated

several strategies for tackling these challenges, using the
AML matching system as a platform.
Our efficiency tests have conclusively demonstrated

the scalability of the hash-based searching strategy for
ontology matching, in contrast with the traditional pair-
wise comparison strategy. Furthermore, they showed that
AML’s local string matching strategy is not only scalable
but also effective, as it produces more accurate results
than performing global pairwise stringmatching.We fore-
see that much of the future development in ontology
matching will be devoted to adapting traditional match-
ing algorithms to the hash-based searching paradigm, or
devising search space reduction strategies, such as local
matching, in order to make them more scalable.
Our lexical richness tests were also conclusive in show-

ing that accounting for the various types of lexical anno-
tations of biomedical ontologies is critical for matching
them effectively, as the gain in recall far outweighs the loss
in precision. Furthermore, they showed that accounting
for the reliability of the different annotation types is rele-
vant, and that a weighting scheme such as the one of AML
is a sound strategy for doing so. Last, but not least, we
showed that the lexical richness of biomedical ontologies
can be exploited to derive additional lexical knowledge,
and consequently find new mappings. However, AML’s
algorithm for exploiting this information requires further
refining and evaluation.
Our background knowledge tests showed that using

background biomedical ontologies for lexical expansion
is usually a less reliable strategy than using them simply
as mediators, which validates the prevalence of the lat-
ter strategy in state-of-the-art ontologymatching systems.
The tests also revealed the value in exploiting the efforts
of the OBO foundry to map ontologies, by means of both
cross-references and logical definitions. Our conclusion
that cross-references are more reliable than lexical infor-
mation for mapping a background knowledge ontology to
the input ontologies is hardly surprising, given that cross-
references are essentially manually curated mappings. But
while it suggests that cross-references should be used
whenever available, care should be taken with respect to
the overlap between the intended scope of the alignment
and that of the cross-references. Logical definitions are
an interesting source of information upon which to derive
mappings, as they enable us to map classes based purely
on their semantics, and capture mappings that could not
be identified from syntax. However, the semantic lati-
tude of the classes to which these logical definitions point
means that some mappings derived from them would be
expectedly wrong. We confirmed by manual evaluation
that the precision of the mappings derived uniquely from
logical definitions was not very high, which suggests that
this approach is best suited for semi-automated ontology
matching scenarios.
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Although our evaluation relied on AML as a testing
platform, we expect the conclusions drawn to be gener-
ally applicable to anymatching system tackling biomedical
ontologies. Some of the features tested are at present only
implemented by AML, and thus replicating the tests in
other matching systems would require substantial devel-
opment. Nevertheless, AML’s matching algorithms are
mostly equivalent to those of other state of the art sys-
tems, and we do not expect any of the configurations
specific to AML to bias the factors tested (except for the
weighting strategy in the lexical weighting test, evidently).
Since all tests are comparative, basing them on a different
matching system should lead to the same overall con-
clusion, even though the absolute results would be likely
different.
Overall, our study made clear that the challenges posed

by biomedical ontology matching are complex, and are
still far from being fully addressed. They demand effi-
cient matching systems that are able to combine multiple
strategies into a mature matching approach.
Two challenges of matching biomedical ontologies that

our study did not delve into are the impact of model-
ing differences on alignment repair and the relevance of
“part of” relations. Alas, the OAEI benchmarks where
repair is a substantial problem lack manually curated ref-
erence alignments, and atypically, the “part of” relation
is poorly represented in the OAEI biomedical bench-
marks, which impedes any serious evaluation of these two
aspects. Another aspect that is not covered by our study
or by the OAEI benchmarks is the semantics of the ontol-
ogy mappings. Even though previous research has tackled
the issue of inferring mappings with different semantics
[36, 37], present OAEI benchmarks focus exclusively on
finding equivalence mappings, and as a result so do most
state of the art matching systems. Since the OAEI is one of
the major driving forces behind ontology matching devel-
opment, it is our view that more effort is needed to ensure
that the biomedical tracks of the OAEI are adequate in
both their coverage of pertinent ontology matching chal-
lenges, and in the quality of their evaluation. Simply
adding new benchmarks is of little worth to the commu-
nity unless these cover new relevant challenges and the
quality of the evaluation enables the assessment of such
challenges.
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