You are viewing the site in preview mode

Skip to main content

Table 4 Mean and standard deviation for accuracy, precision, recall, f1-score, and weighted average f1-score (Acc, Pr, Re, F1, WAF), comparing several approaches. These include our methodology coupled with different embedding methods and different representation strategies, a variant employing a GNN, the gene expression baselines (GE when only the GSE123658 dataset is used and GE+ if the three datasets are used), and the omics integration baselines (SIMBA and MultiMAP). The bold value indicates the highest performance within each embedding method, while the italic value highlights the highest performance for each metric

From: Gene expression knowledge graph for patient representation and diabetes prediction

Metric

Embedding method

Composite gene embeddings

Direct patient embeddings

Type

Model

not norm

pat-norm

gene-norm

Binning approach

Patient-gene links approach

not norm

pat-norm

gene-norm

pat avg

gene avg

Acc

Walk-based

RDF2vec

0.695 ± 0.041

0.695 ± 0.041

0.707 ± 0.050

0.487 ± 0.238

0.564 ± 0.152

0.561 ± 0.119

0.879 ± 0.118

0.854 ± 0.060

Semantic-based

ComplEx

0.671 ± 0.090

0.671 ± 0.090

0.755 ± 0.090

0.510 ± 0.098

0.524 ± 0.046

0.510 ± 0.125

0.633 ± 0.102

0.512 ± 0.115

distMult

0.696 ± 0.065

0.696 ± 0.065

0.780 ± 0.085

0.512 ± 0.100

0.574 ± 0.032

0.488 ± 0.119

0.454 ± 0.101

0.512 ± 0.161

HolE

0.647 ± 0.068

0.647 ± 0.068

0.721 ± 0.080

0.499 ± 0.052

0.598 ± 0.136

0.403 ± 0.065

0.621 ± 0.078

0.830 ± 0.042

Translational

TransE

0.524 ± 0.023

0.499 ± 0.034

0.524 ± 0.023

0.512 ± 0.031

0.487 ± 0.031

0.524 ± 0.023

0.512 ± 0.129

0.649 ± 0.110

TransR

0.524 ± 0.023

0.499 ± 0.034

0.499 ± 0.034

0.426 ± 0.083

0.440 ± 0.032

0.414 ± 0.075

0.706 ± 0.065

0.743 ± 0.047

GNN

      

0.414 ± 0.096

0.478 ± 0.106

GE

0.768 ± 0.120

GE+

0.780 ± 0.083

SIMBA

0.559 ± 0.090

MultiMAP

0.535 ± 0.091

Pr

Walk-based

RDF2vec

0.772 ± 0.137

0.772 ± 0.137

0.718 ± 0.048

0.424 ± 0.318

0.558 ± 0.172

0.517 ± 0.170

0.923 ± 0.154

0.844 ± 0.051

Semantic-based

ComplEx

0.743 ± 0.168

0.743 ± 0.168

0.756 ± 0.080

0.483 ± 0.094

0.519 ± 0.094

0.480 ± 0.112

0.654 ± 0.177

0.488 ± 0.174

distMult

0.762 ± 0.148

0.762 ± 0.148

0.789 ± 0.088

0.482 ± 0.111

0.629 ± 0.189

0.448 ± 0.124

0.412 ± 0.138

0.519 ± 0.184

HolE

0.717 ± 0.167

0.717 ± 0.167

0.710 ± 0.088

0.487 ± 0.053

0.566 ± 0.128

0.353 ± 0.086

0.606 ± 0.057

0.839 ± 0.036

Translational

TransE

0.000 ± 0.000

0.087 ± 0.175

0.000 ± 0.000

0.094 ± 0.188

0.182 ± 0.223

0.000 ± 0.000

0.477 ± 0.110

0.797 ± 0.221

TransR

0.000 ± 0.000

0.087 ± 0.175

0.087 ± 0.175

0.412 ± 0.083

0.372 ± 0.082

0.367 ± 0.085

0.746 ± 0.136

0.732 ± 0.050

GNN

      

0.381 ± 0.109

0.439 ± 0.162

GE

0.821 ± 0.141

GE+

0.856 ± 0.084

SIMBA

0.538 ± 0.124

MultiMAP

0.447 ± 0.257

Re

Walk-based

RDF2vec

0.586 ± 0.158

0.586 ± 0.158

0.636 ± 0.118

0.371 ± 0.300

0.486 ± 0.140

0.432 ± 0.213

0.875 ± 0.158

0.843 ± 0.102

Semantic-based

ComplEx

0.564 ± 0.097

0.564 ± 0.097

0.711 ± 0.169

0.536 ± 0.136

0.461 ± 0.123

0.536 ± 0.193

0.539 ± 0.146

0.404 ± 0.160

distMult

0.614 ± 0.139

0.614 ± 0.139

0.743 ± 0.113

0.464 ± 0.176

0.461 ± 0.166

0.464 ± 0.193

0.386 ± 0.139

0.539 ± 0.094

HolE

0.536 ± 0.111

0.536 ± 0.111

0.718 ± 0.093

0.518 ± 0.109

0.614 ± 0.210

0.357 ± 0.162

0.618 ± 0.172

0.793 ± 0.104

Translational

TransE

0.000 ± 0.000

0.200 ± 0.400

0.000 ± 0.000

0.200 ± 0.400

0.400 ± 0.490

0.000 ± 0.000

0.521 ± 0.209

0.393 ± 0.170

TransR

0.000 ± 0.000

0.200 ± 0.400

0.200 ± 0.400

0.411 ± 0.049

0.307 ± 0.125

0.382 ± 0.190

0.636 ± 0.118

0.739 ± 0.125

GNN

      

0.382 ± 0.172

0.407 ± 0.211

GE

0.671 ± 0.165

GE+

0.671 ± 0.200

SIMBA

0.432 ± 0.142

MultiMAP

0.625 ± 0.371

F1

Walk-based

RDF2vec

0.639 ± 0.050

0.639 ± 0.050

0.667 ± 0.078

0.390 ± 0.296

0.516 ± 0.152

0.462 ± 0.199

0.878 ± 0.105

0.842 ± 0.072

Semantic-based

ComplEx

0.625 ± 0.062

0.625 ± 0.062

0.724 ± 0.123

0.506 ± 0.110

0.470 ± 0.080

0.501 ± 0.142

0.579 ± 0.127

0.431 ± 0.154

distMult

0.657 ± 0.047

0.657 ± 0.047

0.761 ± 0.087

0.464 ± 0.131

0.491 ± 0.077

0.450 ± 0.156

0.397 ± 0.137

0.521 ± 0.128

HolE

0.590 ± 0.035

0.590 ± 0.035

0.710 ± 0.074

0.492 ± 0.039

0.582 ± 0.153

0.348 ± 0.119

0.598 ± 0.095

0.811 ± 0.062

Translational

TransE

0.000 ± 0.000

0.122 ± 0.243

0.000 ± 0.000

0.128 ± 0.256

0.250 ± 0.306

0.000 ± 0.000

0.492 ± 0.154

0.504 ± 0.156

TransR

0.000 ± 0.000

0.122 ± 0.243

0.122 ± 0.243

0.407 ± 0.055

0.331 ± 0.108

0.368 ± 0.126

0.671 ± 0.073

0.728 ± 0.063

GNN

      

0.367 ± 0.134

0.410 ± 0.161

GE

0.730 ± 0.135

GE+

0.729 ± 0.130

SIMBA

0.475 ± 0.135

MultiMAP

0.489 ± 0.247

WAF

Walk-based

RDF2vec

0.683 ± 0.033

0.683 ± 0.033

0.702 ± 0.052

0.473 ± 0.246

0.559 ± 0.151

0.546 ± 0.130

0.870 ± 0.129

0.854 ± 0.060

Semantic-based

ComplEx

0.662 ± 0.086

0.662 ± 0.086

0.751 ± 0.094

0.509 ± 0.098

0.515 ± 0.040

0.506 ± 0.122

0.625 ± 0.104

0.499 ± 0.114

distMult

0.685 ± 0.063

0.685 ± 0.063

0.779 ± 0.085

0.506 ± 0.099

0.553 ± 0.014

0.483 ± 0.121

0.449 ± 0.105

0.505 ± 0.167

HolE

0.636 ± 0.060

0.636 ± 0.060

0.719 ± 0.079

0.490 ± 0.060

0.594 ± 0.135

0.389 ± 0.064

0.613 ± 0.081

0.829 ± 0.043

Translational

TransE

0.361 ± 0.027

0.333 ± 0.037

0.361 ± 0.027

0.348 ± 0.035

0.320 ± 0.034

0.361 ± 0.027

0.508 ± 0.132

0.619 ± 0.119

TransR

0.361 ± 0.027

0.333 ± 0.037

0.333 ± 0.037

0.422 ± 0.083

0.425 ± 0.043

0.407 ± 0.070

0.698 ± 0.065

0.740 ± 0.047

GNN

      

0.396 ± 0.091

0.461 ± 0.110

GE

0.764 ± 0.121

GE+

0.771 ± 0.093

SIMBA

0.549 ± 0.096

MultiMAP

0.430 ± 0.150